


PERFORMANCE EVALUATION OF TRAFFICSENS SIGNAL OPTIMIZATION AND REPHASING

A CASE STUDY OF TAMAN MOUNT AUSTIN, JOHOR BAHRU

➤ Two (2) signalised junction at Jalan Mutiara Emas Utama, JB were identified as a study area

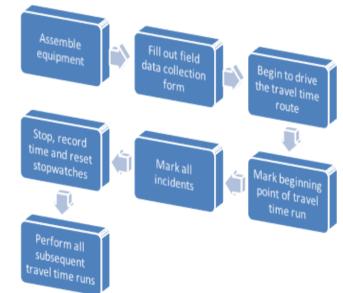
> The distance is less than 500m, therefore, possible to coordinate

➤ The ever increasing traffic volume at the study area continues to place heavy demands at Jalan Mutiara Emas

Coordinated signals often provide a good solution for this growing problem

- > The objective of this study is to evaluate junctions network performance of different signal strategies:
 - Signal Rephasing (Plan 1)Signal Timing and Optimization (Plan 2)
- > Details of junctions configuration of both junctions as below:

			Phase Splits (%) (AM)				Phase Splits (%) (PM)						
Plan	Intersection	Cycle	1	2	3	4	5	1	2	3	4	5	Phase
		(s)											Sequence
Plan 1	B25	180	22	16	22	22	16	25	19	19	19	18	3,4,5,1,2
	B26	165	32	16	28	24	NA	39	15	24	21	NA	2,3,1,4
Plan 2	B25	180	22	16	22	22	16	31	19	22	17	11	1,2,3,4,5
	B26	145	28	16	28	28	NA	31	17	31	21	NA	1,2,3,4


➢ Parameters used in this study are Travel Time (s), Control Delay (s) and CO₂ Emission (cc)

1. TRAVEL TIME

- Measure by using Manual Test Vehicle technique
- Sample size is referring to FHWA Travel Time Handbook

Traffic Signal	Average						
Density (signals	Coefficient of	Sample Sizes					
per mile)	Variation (%)	90% Confidence,	95% Confidence,	95% Confidence,			
		= 10% error	= 10% error	= 5% error			
Less than 3	9	5	6	15			
3 to 6	12	6	8	25			
Greater than 6	15	9	12	37			

Manual Test Vehicle Technique Procedures

2. CONTROL DELAY

Computed based on Highway Capacity Manual 2000 method

$$d = d_1 x PF + d_2 + d_3$$
 (1)

$$d_{1} = \frac{0.5C \left[1 - g/C\right]^{2}}{1 - (g/c) \left[\min X, 1.0\right]}$$
(2)

$$d_2 = 900T [(X-1)^2 + 8KiX/Tc]$$
(3)

where,

d

d2

d3 PF

с

X C

g T

k

Ι

- = control delay (sec/veh)
- d1 = uniform delay (sec/veh)
 - = incremental delay (sec/veh)
 - = residual demand delay (sec/veh)
 - = uniform delay adjustment for quality of progression
 - = capacity of lane group (veh/hr)
 - = v/c ratio for lane group (veh/hr) with v representing demand flow rate
 - = cycle length (sec)
 - = effective green time for lane group
 - = duration of the analysis period (hr)
 - = incremental delay adjustment
 - = incremental delay adjustment for filtering and metering by upstream signals

3. CO₂ EMISSION

Computed using vehicle trajectory data, obtained from field data measurement. Equation was developed by Oguchi, 1996

$$E = K_C (0.3T + 0.028D + 0.056AEE)$$
(1)

$$AEE = \sum_{k=1}^{k} \sigma_{\underline{k}} \binom{n}{k} v_{\underline{k}}^{2} - v_{\underline{k},\underline{k}}^{2}$$

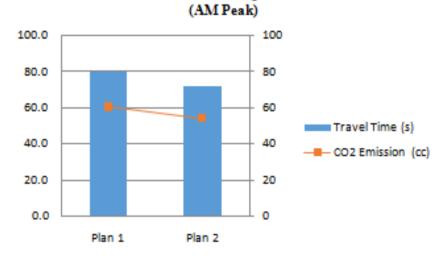
where,

E : volume of CO₂ emission

T : travel time (s)

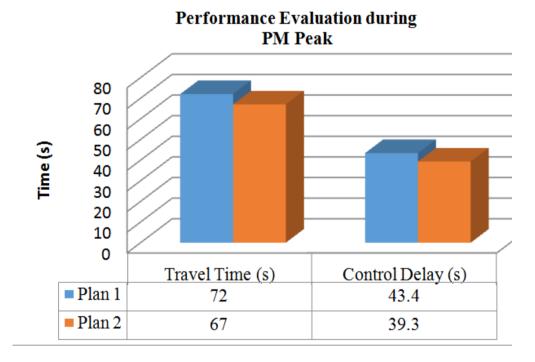
D : travel distance (m)

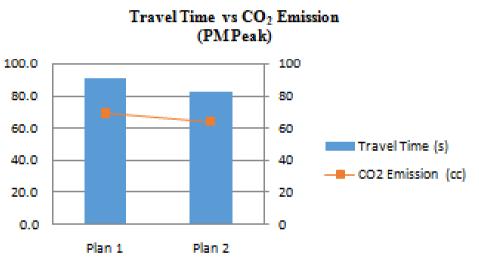
AEE : acceleration energy equivalent (m^2/s^2)


K_C : coefficient to convert the gasoline fuel consumption to the volume of CO₂ emission

 s_k : $\sigma_k = 1$ if $v_k > v_{k-1}$, otherwise $\sigma_k = 0$

 v_k : velocity at time k (m/s)





Travel Time vs CO₂ Emission

Parameters		AM Pe	ak	PM Peak (Southbound-Northbound Direction)			
	(Northb	ound-Southb	ound Direction)				
	Plan 1	Plan 2	Differences (%)	Plan 1	Plan 2	Differences (%)	
Travel Time (s)	80	69	7	72	67	6	
Travel Speed (km/hr)	21	23	7	23	27	6	
Control Delay (s)	58.5	44.4	13.7	43.4	39.3	5	
CO ₂ Emission	60	54	5	64	37	4	

➤ The analysis was done at Northbound-Southbound (NB-SB) corridor during AM peak whereas the analysis of Southbound-Northbound (SB-NB) corridor was done during PM peak.

The method of collecting data and analysis is entirely by field measurement data and computational equation

The analysis indicates Plan 2 (signal timing optimization) resulted efficient coordinated network performance compared to Plan 2 (signal rephasing)

The network junctions result shows significant improvement on the coordination by reduction of 7% travel time and 13.7% control delay. Whereas, in PM peak, the network junctions performance indicates a significant improvement as the travel time and carbon emission is reduce to 7% and 5% respectively. This result is compared to the signal phasing arrangement strategies to evaluate the network junction performance.