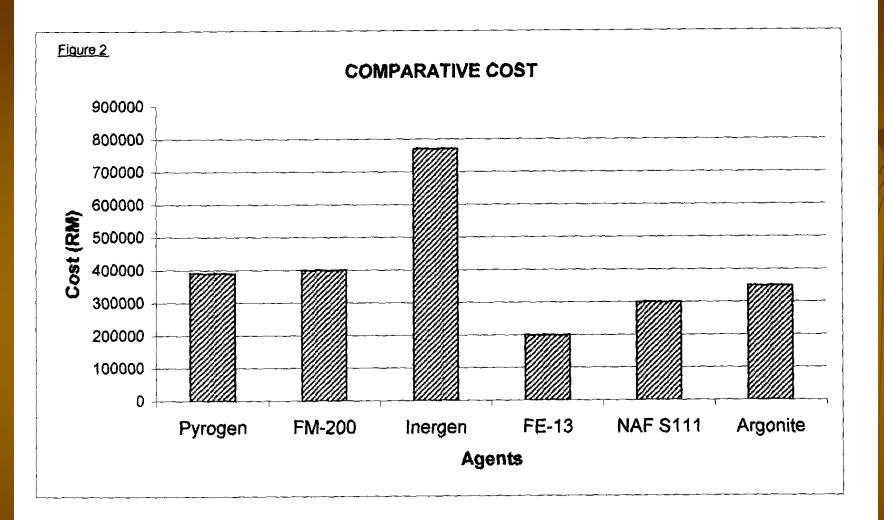
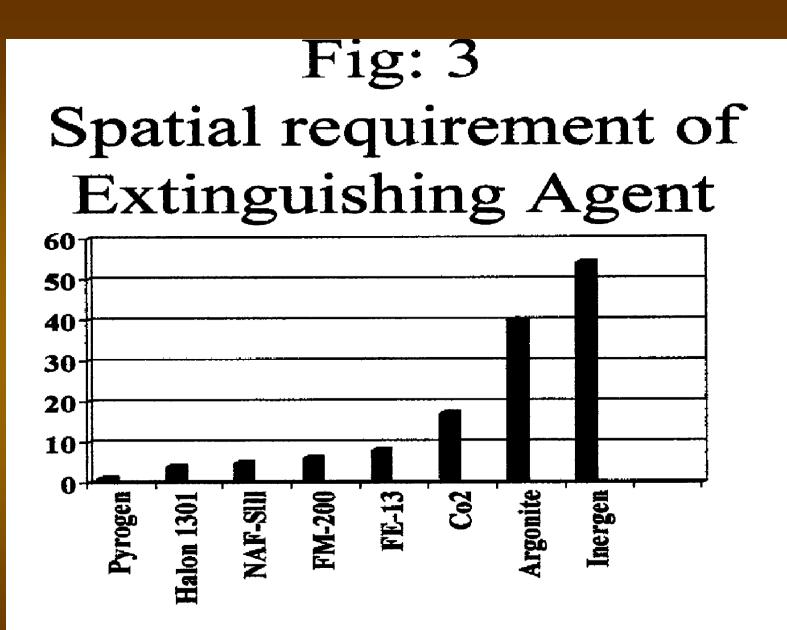
Comparison of Gaseous Extinguishants


Table 2 : COMPARISON OF MATERIALS SAFETY DATA SHEETS

Item		AFIIE	Argonite	CO ₂	FE 13	Fs 49	Fm200	Înarace	MAR OTT			·
A 1	Health Hazard Data Hazard to human health		Low			<u> </u>		Inergen	NAF SIII	Pyrogen	H ₂ O Mist	NN100
2	Hazard to environment	+	<u> </u>	High No	Low GWS	Little	Low	Slight	Low	Low	Nil	Low
3	Releases dangerous products when decomposed		No	No	Yes	Little Yes	GWS Yes	No No	Yes	·	Nil	No
4	Dangerous by products		No	No	Yes	Yes	Yes	No	Yes	<u> </u>		No Oxides o Nitroger
5	High concentration can cause suffocation without forewarning				Fatal	Yes		No				
6	High concentration can cause asphyxiation		May		Yes	Yes		Yes				Yes
7	Low concentration may cause frost bit		No		Yes	Yes		No				 May
8	Gas is i. Colourless ii. Odourless iii. Havier than air		Yes Yes Yes	Yes Yes No	Yes No Yes	Yes No Yes		Yes Yes No				Yes Yes
1	Exposure controls Require breathing protection		Yes	Yes	Yes	Yes		No			——— —	No
2	Safety glasses		No	—	Yes	Yes						Yes
3	Protective gloves		No	Yes	Yes	Yes		Yes				Yes
4	Neoprene apron and boots		No		1 63	Yes		Yes No				Yes
5	Shower and eye wash station		No		Yes	Yes		No				No
1	Other Considerations Disposal - to recycle		No	No		Yes		No				Yes No
2	Pressurised Sysstem		Yes	Yes	Yes	Yes	Yes	Yes		No		Yes


Table 3: EXTINGUISHING TIME (Base on LPC Reports)

AGENTS	Type of Test (time in sec.)											
AGEN13	445mm n-heptene	300mm n-heptene	Large wood crib	Small wood crib	6mm PVC crib	PVC ribbon crib						
AF11E	75.0	75.0	285.0	195.0	100.0	45.0						
Argotec	73.0	87.0	54.0	58.5	16.0	5.0						
Argonite	99.0	162.0	27.0	41.0	60.0	18.0						
CO ₂												
CEA-410	10.0	8.0	11.0	8.0	6.0	3.0						
FE-13	5.0	3.0	4.5	4.0	4.0	1.0						
FS49C2					· · · · ·							
FM 200 (7%)	155.0	282.0, 320.0, 15.0	33.0	10.0	70.0	2.0						
FM 200 (8.6%)	7.0	7.0	8.0	6.0	4.0	3.0						
Inergen	62.0	116.0	31.0	39.0	39.0	6.0						
NAFS111	11.0	8.0	6.0	8.0	100.0	2.0						
Pyrogen												
Water Mist		1	†									
NN100												
HALON 1301	9.0	8.0	5.0	8.0	9.0	3.0						

Class Of Fire	Description	Testing Materials
Class A	Fires involving combustible solid materials like paper, wood, etc.	Wood crib, PVC crib & PVC ribbon crib
Class B	Fires involving inflammable liquids like kerosene, diesel, etc.	N-Heptene
Class C	Fires involving flammable gases	
Class D	Fires involving reactive metals like sodium and potasium	
Class E	Fires involving ignition of an electrical nature	

Item	Agent	Chemical	tmosphere				Sensitisation	Min.		FRDM	Others		Storage	
		Composition	Life (yrs)	ODP	GWP	NOAEL %	LOAEL %	Design Concent	Approving Std.	Approved usage	Approved usage	LC50 ppm	vol. VS Halon	Phase out year
1	AF11E	HCFC-123 + OTH.	1.5	0.016	18	9.0	9.5	5	LPC	NNOA		>750.000	0.9	2030
2	Argonite	N2, Ar	0	0	0	43	52	39	NFPA 2001		OA-EPA		10	Non
3	CO2	CO ₂	NA	0	1.0					NNOA				
4	FE-13	HFC-23	230	0	12,100	50	>50	18	UL, FM, NFPA		OA-EPA	650,000	1.68	Non
5	FS49C2	HFC 349C2(R866), CO ₂ + OTH.	40	0	350	13	15	8	IMO	NNOA		500,000	1.08	
6	FM 200	HFC-227EA	41	0	3300	9	10.5	7	BS5306, NFPA		OA-EPA	788,696	1.5	
7	Inergen	N ₂ , Ar, CO ₂	NA	0	0	43	52	37.5	UL, FM, NFPA	OA	OA-EPA	Nil	10.5	Non
8	AFS111	HCFC Blend A	12	0.036	1450	12	14	9.9	UL, Canada, NFPA 2001		OA-EPA	320,000	1.1	2040
9	Pyrogen	$\frac{\text{KNO}_3, \text{ C}_6\text{H}_7\text{O}_2, \text{ C}_3,}{\text{H}_5 + \text{OTH}.}$	0	0	0	Unknown	Unknown	100gm * m ³	USEPA	NNOA	NNOA-	Unknown	0.33	 Non
10	Water Mist	H ₂ O	NA	0	0	NA	NA	NA	NFPA, IMO	OA	EPA OA-EPA	NA		Non
11	NN100	N2	NA	0	0	43	52	40.3	USEPA					
12	HALON	CBrF,	65	16	5600	5	7.5	5	Prohibited	To Phase Out		800000	10	Non 2005

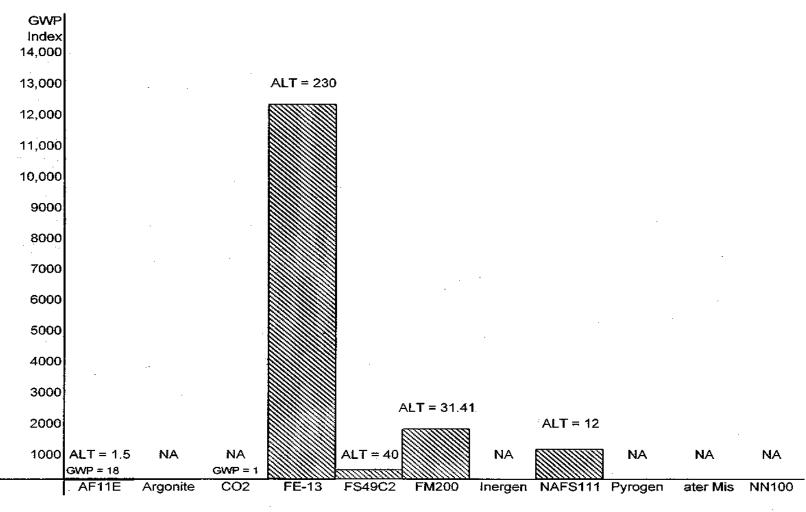
Table 1 : TABULATION OF ENVIRONMENTAL & RELATED PROPERTIES OF HALON ALTERNATIVES

Legend : ODP = Ozone Depletion Potential

GWP = Global Warming Potential

NOAEL = No Observed Adverse Effect Level

LOAEL = Lowest Observed Adverse Effect Level


= Occupied Areas OA

UA = Unoccupied Areas NNOA = Not Normally Occupied Areas * = Measured by Weight per Volume

Table 4: OBSCURATION & HAZARD OF THERMAL DECOMPOSITION (Base on LPC Reports)

AGENTS	Obscuration during discharge	Thermal Decomposition, levels of Hydrogen Flouride from independent test
AF11E		
Argotec		
Argonite		
CO ₂		
CEA-4 10	Moderate (50%+ for 2 minutes)	High, 92 to 1,556 ppm HF likely to exceed safe levels
FE-13	Moderate (50%+ for 30 seconds)	Severe, 21 to 1,029 ppm HF likely to exceed safe levels
FS49C2		
FM 200 (7%)	Severe (100% for 4 minutes or longer)	Severe, 220 to 10,234 ppm HF likely to exceed safe levels
FM 200 (8.6%)		
Inergen	None	None
NAFS111	Severe (100% for 4 minutes or longer)	Severe, 46 to 2,927 ppm HF likely to exceed safe levels
Pyrogen		
Water Mist		
NN100		
HALON 1301	Mild (20% for 4 minutes or longer	Moderate, 11 to 270 ppm HF possible to exceed safe levels

Figure 1 : GLOBAL WARMING POTENTIAL COMPARE TO C02

TYPE OF AGENTS

NOTE : NA = ALT Not Applicable