

JABATAN KERJA RAYA MALAYSIA

REKABENTUK PERSIMPANGAN *GEOMETRIC STANDARD*

Mohd Syukri bin Md Hanafiah Jurutera Awam Kanan BRJ Zon Tengah, PKJJ Cawangan Jalan

GEOMETRIC STANDARDS

- 1. Horizontal Alignment
- 2. Vertical Alignment
- 3. Sight Distance
 - 1. Sight Triangle
 - 2. Sight Distance For Approach
 - 3. Sight Distance For Departure
 - 4. Effect of Skew
 - 5. Effect of Grades
- 4. Right Turn Lanes
 - 1. Design Consideration
 - 2. Length Of Right Turn Lanes
 - 3. Width of Right Turn Lanes; same with thru lane or min 3m
 - 4. Seagull Island
 - 5. Central Island and Median Design

- 5. Left Turn Lanes
 - 1. Simple Left-Turn
 - 2. Separate Left-Turn lanes
 - 1. Design Speed of Left-Turn Lanes
 - 2. Radius for Separate Left-Turn Lanes
 - 3. Width of Left-Turn Lanes
- 6. Pavement Tapers
 - 1. Taper Length
 - 2. Types of Tapers
- 7. Auxiliary Lanes
 - 1. Deceleration Lanes
 - 2. Acceleration Lanes
 - 3. Width of Auxiliary Lanes; Desirably 3.5m, Min 3m

- 8. Islands and Opening
 - 1. Traffic Islands
 - 2. Median Islands
 - 3. Median Openings
- 9. Widening of Major Road
- 10. Minor Road Treatment
- 11. Shoulders
- 12. Crossfall and Surface Drainage
- 13. Weaving

- 1. Horizontal Alignment
- Right angle intersections
- Angle between two roads is 70 ° to 90°
- Improvement: realignment or staggered T-intersections
- Stop or Give Way sign should be provided on minor road of unsignalised T-intersections

2. Vertical Alignment

- The gradient of the intersecting highways should be as flat as practicable
- Grades > 3% should be avoided

3. Sight Distance

- Two aspects to be considered for drivers passing through an intersections;
 - Sufficient unobstructed view to recognize potential conflicting traffic, traffic sign or signals
 - Sufficient sight distance to make safe departure after the vehicle has stopped at the stop line

***TABLE 3.2: SIGHT DISTANCE FOR INTERSECTION APPROACH**

Design Speed <u>Of</u> Major Road (Km/h)	Signal C Rural (m)	Stop Control <u>On</u> Minor Road	
(Kingin)	ixurar (m)	or barr (m)	
100	480	370	260
80	350	260	170
60	240	170	105
50	190	130	80
40	140	100	55
30	100	70	35
20	60	40	20

Note: On The Major Roads <u>Of</u> Stop Controlled Intersections, The Stopping Sight Distances Given In latest <u>Arahan Teknik</u> (Jalan) 8/86 "A Guide To Geometric Design Of Roads" Must Be Satisfied. Sight distance for departure, d

d = 0.28V (J + ta)

where d = Min sight dist. (meters)

- v = design speed of major road, km/h
- J = sum of perception time and time required to shift to first gear, seconds (assumed 2 seconds)
- ta = time required to accelerate and traverse the distance S to clear the major road, seconds (Figure 3-4)

 Value of ta can be read directly from Figure 3.4 for a given distance S in m.

 $\mathsf{S}=\mathsf{D}+\mathsf{W}+\mathsf{L}$

where D = distance from near edge of pavement to front of stop vehicle

- W = width of pavement along path of crossing vehicle
- L = length of vehicle

Figure 3-4: Sight Distance at Intersection Data On Acceleration From Stop

*FIGURE 3.5: SIGHT DISTANCE AT INTERSECTIONS EFFECT OF SKEW

*TABLE 3.3: EFFECT OF GRADE ON STOPPING SIGHT DISTANCE WET CONDITIONS

Design	Correction In Stopping Distance – Metre							
Speed.	Decrease For Upgrades			Increas	e For Dowr	ngrades		
(Km/ <u>hr</u>)	3%	6%	9%	3%	6%	9%		
30	-	-	3			3		
40		3	3		3	6		
50	-	3	6	3	6	9		
60	3	6	9	3	9	15		
80	6	9	-	6	15	-		
100	9	15	-	9	24	-		

*TABLE 3.4: CORRECTION FACTOR FOR THE EFFECT OF GRADE ON ACCELERATION TIME, TA

Design Vehicle	Minor Road Grade (%)					
	-4	-2	0	+2	+4	
Passenger Cars (P)	0.7	0.9	1.0	1.1	1.3	
Single Unit Trucks (SU)	0.8	0.9	1.0	1.1	1.3	
Semi-Trailers (WB - 15)	0.8	0.9	1.0	1.1	1.7	

4. Right Turn Lanes

Should be considered in following cases;

- 1. Major road flow exceeds 600 vehicles/hr
- 2. At all intersections on divided urban roads with sufficiently wide median.
- 3. At all intersection on undivided urban roads where turning traffic is likely to cause unacceptable congestion and / or hazard

LT=	1	100
	3	¥ 10
		v

Where

Y = Design speed in km/h.

Yd = Width of right tum lane (m)

LT = May be rounded to the nearest nultiple of 5m

For design of S-curve See Figure:3-22

C) WIDTH OF CENTRAL ISLAND

		W (m)				
	Yd (m)	Pedestrian Signal pedesta Refuge No pedestrians		No Signal or pedestrians		
)esirable	3.5	2.50	2.50	2.50		
linimum	3.0	2.50	1.80	1.20		

D) DECELERATION LENGTH, LD (m)

C-F-F			Design speed in km/h					
Gradient	n %	20	30	40	50	60	80	100
Takat	4	20	28	41	54	72	108	153
Орши	2	20	30	45	60	80	120	170
Level	0	20	30	45	60	80	120	170
Develuil	2	20	30	45	60	80	120	170
Dominin	4	20	34	53	72	96	144	204

NOTES

- The length of the reservoir space shall be rounded upwards to the nearest multiple at 5m
- Deceleration lengths for other gradients may be found by interpolation or up to 6% by extrapolation.
- 3. All dimensions are in m.

*FIGURE 3.9: SEAGULL ISLAND

Central Island and Median Design

- 1. Painted as cross hatched areas on pavement (ghost island)
- 2. Raised island surrounded by kerbs

Kerbed Island

Ghost Island

5. Left Turn Lanes

- 1. Simple left turns
- Provided where traffic volumes are low
- Radius of kerb for left turn at <u>Urban Intersection</u> should be a <u>minimum 6 m.</u>
- 2. Separate Left Turn Lanes
- A corner <u>island</u> can be introduced to create a separate left-turn lane.

*TABLE 3.5: MINIMUM DESIGN SPEEDS FOR LEFT-TURN CHANNEL

Design Speed Of Approach Road (Km/h)	Minimum Design Speed Of Left-Turn Lanes (Km/h)
100	50
80	40
60	30
50	30
40	20
30	20
20	20

Traffic condition : Sufficient SU vehicles to govern design but some consideration for semitrailer vehicles.

Figure 3.10: Design of Separate Left-Turn Lanes

Scale : Not to scale

6. Pavement Tapers

Taper Length

The minimum lengths of pavement taper for diverging and merging movements can be computed by the formula:

$$Td = \frac{V}{3.6} \times \frac{Yd}{0.9}$$
$$Tm = \frac{V}{3.6} \times \frac{Ym}{0.6}$$

Where,

- $Td\,$ Min length of pavement taper for diverging movements (m)
- $Tm\,$ Min length of pavement taper for merging movements (m)
- $Yd\,$ Lateral deflection of diverging traffic (m)
- $Yd\,$ Lateral deflection of merging traffic (m)

7. Auxiliary Lanes

Design Speed of Approach Road	Langth* of Deceleration Lone - (m) (including length of topered approach) Where design speed of exit curve (km/h) is.								
(km/h)	0**	044 20 30 40 50 60 80							
4D	45	40	32	-	-	-	-		
50	60	54	46	32	-	-	-		
6D	8D	74	64	50	28	-	-		
8D	120	112	104	94	B2	64	-		
1DD	170	162	154	144	132	118	BO		

**Length frequired when a vehicle decelerates to zero speed.

NOTE: Where the length of deceleration kane shown is less than the standard taper Td, Td should not be reduced. <u>TABLE 3.9</u>: <u>LENGTH OF DECELERATION LANES</u>

Crode Ratio of Length on Grade to Length on Level 0 - 2% 1.0 1.0 3 - 4% 0.9 1.2 5 - 6% 0.8 1.35

TABLE 3.10 : CORRECTION FOR GRADE

8. Islands and Median

- 1. Traffic Island
- In Urban area, raised island area > 8 meter square
- In Rural area, raised island area > 50 meter square
- 2. Median Island
- To separate opposing traffic stream
- Provide refuge for pedestrian crossing
- Reduce conflicting road crossing points

Where standard pavement tapers can be provided and lane width is W2

*FIGURE 3.17: END TREATMENT FOR NARROW MEDIAN

*FIGURE 3.20: MEDIAN OPENING

THROUGH TRAFFIC

TWO-WAY OPENING BETWEEN THROUGH ROAD AND SERVICE ROADS

	Radius		
Outer Separator Width W (m)	R1 (m)	R2 (m)	
5-10	15	0.2W	Note:-
11-15	23	0.2W	Two way opening only applicable
16-25	30	0.2W	for low meed is 60km/h

10. Minor Road Treatment

*TABLE 3.13: MINOR ROAD TREATMENT

a) Rural Area

	Mir				
Highway	Primary Road	Secondary Road	Minor Road		
С	С	F	F/N	Highway	
	C/F	F	N	Primary Road	Major
		F/N	N	Secondary Road	Road
			N	Minor Road	

* Normally at-grade intersection should not be adopted

b) Urban Area

	Minor Roa	ld		
Arterial	Collector	Local Street		
C	C/F	F/N	Arterial	
	F	Ν	Collector	Major Road
		Ν	Local Street	

Where two alternatives are given, traffic volume should be taken into account for the election

C = Channelised

F = Flared

N =NoTreatment

11. Shoulders

Shoulder widths in general shall remain unchanged but may be reduced.

12. Crossfall and Surface Drainage

- Crossfall of thru lane of major road shall remain unchanged thru the intersections.
- Superelevation of corner lanes in connection with triangular islands on the minor road shall in general not exceed 6 percent.

13. Weaving

- na
- A weaving section is a road segment where the pattern of traffic entering and leaving at contiguous points of access results in vehicle paths crossing each other.
- Traffic through a weaving section consists of weaving traffic and nonweaving traffic.

FIGURE 3.24: TERM USED WEAVING Source: Design Manual for Roads and Bridges Volume 6 Section 2 Part 1 TD 22/06- Figure 2/9

FIGURE 3.25: DEFINITION OF TERMS USED IN WEAVING AND MEASUREMENT OF WEAVING LENGTH FOR TAPER AND AUXILIARY LANE LAYOUTS

Source: Design Manual for Roads and Bridges Volume 6 Section 2

THANK YOU