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1 Introduction 

1 .1 General Remarks 

Automated design is a topic of interest in every 

engineering discipline. The contributing factor is that design, 

unlike analysis, is a multivalued problem. In general, most 

design problems do not have a unique solution. 

Early approaches to automatic design of structures focused 

on the automation of standard office design practices. However, 

this approach is useful primarily for specific cases only. It lacks 

flexibility and is difficult to generalize. The second approach is 

analysis-oriented, and is based on structural criteria. The third 

approach involves the application of mathematical programming 

ideas. 

Numerous automatic design algorithms have been 

developed based on these approaches. However, almost all the 

available algorithms for the optimal automatic design of 

engineering structures make the assumption that design 

variables, such as member sizes, are continuous-valued, and that 

the material and its properties from which each member is 

made, is known in advance. In practice, however, designers 

rarely have the freedom to choose member sizes from a 

continuous range, as this implies a separate and expensive 

fabrication process for each member. Usually, designers are 
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restricted to choosing member sizes from a discrete set of 

available pre-fabricated sizes. Furthermore, although the range 

of available sizes may be large, it is common practice to pre­

select a small subset of perhaps five or six of these sizes which 

may actually be used in design. 

Designers may also t'md difficulty in specifying the material 

properties of each member before the design process starts. 

Typically, a particular steel section, reinforcement bar or 

concrete may be produced in several steel grades or concrete 

strengths, each with a different set of material properties and 

costs. Ideally, the design process itself should select the most 

appropriate material for each member. 

Furthermore, difficulties are encountered with the design 

requirements and codes specifications. Many of these are 

developed by designers after several years of experience and 

successful design. Furthermore, these specifications, as 

presented in the codes, represent functions that are nonlinear 

and discontinuous. Thus, they are not easily formulated as a 

continuous function as required in mathematical and optimal 

criteria algorithms. 

Also, the objective function, in the practical world, is the 

cost of the structure rather than weight. Cost is a function of 

several factors, and it is not a continuous function of the design 

variables: rather, it may be a function . of economics (availability 
2 



and cost of the materials) and fabrication (construction 

methods). Thus, the discrete properties of the variables also 

imply that the objective functions vary in a discrete, 

discontinuous fashion. 

Although the discrete nature of member sizes and design 

specifications has long been recognized, little research has been 

devoted to automated structural design incorporating discrete 

design variables and discontinuous constraints. The 

characteristic of these problems precludes the application of 

many widely used mathematical optimization and optimal 

criterion procedures. For example, linear programming is not 

directly applicable because of nonlinearity of both the 

constraints and the objective function. Dynamic programming is 

not directly applicable because there is not a sequential flow of 

information. Gradient search and pattern search methods are 

not applicable, because the objective function is neither 

continuous nor unimodal and because the design variables are 

defined only at discrete values. 

Attempts have been made to add these discrete properties 

to existing, computationally efficient. continuous valued 

optimization methods. An initial approach was to replace the 

discrete value variable with a continuous one, to solve the 

resulting optimization problem with a "continuous" method. and 

then finally to round off the solution to the nearest available size. 
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This approach, while useful in some problems, is not Without 

pitfalls. 

Consider a hypothetical function with contours as shown 1n 

Figure 1.1.1. The + ' s represents available combinations of d 1 

and d2. The optimal solution of the continuous problem is at 0 

(xl,X2). If the values of x1 and x2 obtained for this solution are 

rounded to the nearest integer values, the result is neither an 

optimal nor a feasible solution. The actual discrete optimal 

feasible solution is represented by P, and P is not adjacent to 0 

in each variable. 

Thus, even if a continuous solution may be obtained from a 

continuous design algorithm, there is no way of determining a 

priori for each structural member whether it should be rounded 

up or rounded down in size. Ad hoc rounding rules may be 

devised for some structures, but they offer no guarantee of 

optimality or feasibility. One section size may in fact separate a 

good design from an optimal design. Even so, for practical 

situations, this rounding process turns out to be a combinatorial 

problem of immense size. Consequently, the use of continuous 

optimum design with some approximate rounding rules cannot 

be recommended, especially when the member sizes are limited 

to a small discrete set covering a wide range of sizes. 



Unfortunately, even if there exists a continuous analog of 

the discrete problem, the complexity of these methods is then 

greatly increased and its efficiency severely reduced. 
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