

## MOULDED CASED CIRCUIT BREAKER (MCCB) TRIPPING AT COMPUTER LABORATORY SUB-SWITCHBOARD



Politeknik Seberang Perai P.Pinang

## **POWER QUALITY TEAM**

Power Quality Team Caw. Kejuruteraan Elektrik JKR Malaysia



Power Quality Unit Universiti Teknologi MARA Pulau Pinang



Hj. Nizar Othman Noor Ashikin Md Tamimi Hamzah Ismail Mohd Azlan Othman Elyas Nordin Shaiful Izzuddin Mohamad Assoc. Prof. Mohd Zaki Abdullah Assoc. Prof. Rusnani Ariffin Sa'adiah Mohd Said Wan Salha Saidon Mohamad Sarih Daud

# INTRODUCTION

## Moulded Case Circuit Breaker (MCCB) tripping at the Sub-Switchboard (SSB 'CL') for Computer Laboratory Block



PROBLEM

STATEMENT

# INTRODUCTION







# To identify the causes of the MCCB tripping at the Sub-Switchboard (SSB 'CL')



# WORKFLOW PROCESS

- a. Briefing
- b. Site Investigation
- c. Power Quality Monitoring
- d. Data Analysis
- e. Joint Venture Report
- f. Presentation to PSP





# INVESTIGATION PROCEDURE

Visual inspection of installation as per wiring regulation requirements.

A measurement was done using power quality **monitoring equipment Fluke 1750** at the incoming of MCCB at SSB 'CL'.

➢ The power monitoring was recorded from 21<sup>st</sup> until 31<sup>st</sup> October 2013 (with a sampling rate of 10ms).



### A simplified single line diagram for the SSB'CL'



During the measurement period, there was **no tripping incident** but there were **events on voltage swells** (overvoltages) which recorded 5,337 times.



### Voltage Summary

|         | 10 minutes trend data average<br>RMS |                  |                  | Detail view data average RMS |                  |                  |
|---------|--------------------------------------|------------------|------------------|------------------------------|------------------|------------------|
| Phase   | V <sub>L1N</sub>                     | V <sub>L2N</sub> | V <sub>L3N</sub> | V <sub>L1N</sub>             | V <sub>L2N</sub> | V <sub>L3N</sub> |
| Voltage | 256.50V                              | 257.95V          | 257.83V          | 258.14V                      | 259.91V          | 259.55V          |
|         | (+11.52%)*                           | (+12.15%)*       | (+12.10%)*       | (+12.23%)*                   | (+13.00%)*       | (+12.85%) *      |

\*These average RMS voltages are exceed +10% limit of the nominal voltage.

Figure below shows the voltage fluctuation is <u>21V</u> (9.3%) are considered high (above 6% of nominal voltage, i.e.>13.8V)





### Voltage Summary

Recorded data shows that, when the current increase and the voltage drop significantly (or vice versa) shows that the electrical distribution system for SSB'CL' has high system impedance.



![](_page_10_Picture_4.jpeg)

### Current Summary

|         | 10 minutes trend data average<br>RMS |         |         | Detail view data average RMS |         |         |
|---------|--------------------------------------|---------|---------|------------------------------|---------|---------|
| Phase   | L1                                   | L2      | L3      | L1                           | L2      | L3      |
| Current | 216.97A                              | 188.08A | 205.09A | 259.13A                      | 220.55A | 239.77A |

![](_page_11_Figure_3.jpeg)

![](_page_11_Picture_4.jpeg)

### Current Summary

| Data                              | Unbalance Neutral<br>Current, I <sub>N</sub> | Indicator                          | Effect to the system          |
|-----------------------------------|----------------------------------------------|------------------------------------|-------------------------------|
| 10 minutes trend data average RMS | 55.12 A                                      | > the earth fault<br>relay pick up | nuisance tripping to the MCCB |
| Maximum current<br>unbalance (%)  | 23.41%                                       | current (i.e 50 A)                 |                               |

![](_page_12_Figure_3.jpeg)

![](_page_12_Picture_4.jpeg)

### Harmonic Summary

The value of Voltage Total Harmonic Distortion ( $V_{THD}$ ) and Current Total Harmonic Distortion ( $I_{THD}$ ) for SSB 'CL' :

| Phase                             | L1N   | L2N   | L3N   | Indicator                                                                                                                       |
|-----------------------------------|-------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| Average V <sub>THD</sub><br>(Max) | 1.22% | 1.55% | 1.20% | The values of V <sub>THD</sub> <u>are</u><br><u>acceptable and within</u><br><u>the limit</u> (< 8 % based on<br>IEC 61000-2-2) |
| Phase                             | 11    | 10    | 12    | Indicator                                                                                                                       |
|                                   | 6.5   | LZ    | LS    | indicator                                                                                                                       |

The low  $V_{THD}$  and  $I_{THD}$  that are generated by the loads connected to distribution boards are not related to the tripping of MCCB.

![](_page_13_Picture_5.jpeg)

# FINDINGS Neutral to Ground Voltage, V<sub>NG</sub>

| Data                                             | V <sub>NG</sub>     | Indicator                                                                                                  | Caused by                                                                                                                                                                                                      | Effect to the system                                                                                                                                                                |
|--------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10<br>minutes<br>trend<br>data<br>average<br>RMS | 16.65V              | high levels of<br>V <sub>NG</sub>                                                                          | <ol> <li>indicates a         <u>loose/corrode</u> <u>connection</u> at the         ground electrode     </li> <li>the <u>volt drop along</u></li> <li><u>the resistance of</u></li> <li>the neutral</li> </ol> | <ol> <li>contributes to the power quality problem</li> <li>some of the sensitive loads are disrupted or damaged</li> </ol>                                                          |
| Detail<br>view data<br>average<br>RMS            | 87.47V<br>(impulse) | The magnitude<br>of V <sub>NG</sub> is high<br>(values above<br>4.3% (> 10V) of<br>the nominal<br>voltage) | Neutral to ground<br>impulses indicate that<br>there are <u>wiring errors</u><br>in the electrical wiring<br>installation<br>(intermittent single<br>line-to-ground fault)                                     | Neutral to ground<br>impulses can result in<br><u>equipment damage</u><br>over time and also can<br>cause <u>nuisance tripping</u><br>of Residual Current<br>Circuit Breaker (RCCB) |

![](_page_14_Picture_2.jpeg)

### Neutral to Ground Voltage

#### The neutral to ground event recorded :

| #     | Date/Time                   | Туре  | Duration (Days - Hrs:Min:Sec) | % of Nominal | Absolute | Triggered Phase |
|-------|-----------------------------|-------|-------------------------------|--------------|----------|-----------------|
| 1,707 | 24/10/2013 09:44:13.183.227 | Swell | 0 - 00:00:00.039945700        | 37.94%       | 87.267 V | NG              |
| 30    | 21/10/2013 19:06:43.393.282 | Swell | 0 - 00:00:00.050085300        | 37.71%       | 86.738 V | NG              |
| 2,199 | 25/10/2013 21:27:36.636.293 | Swell | 0 - 00:00:00.049950100        | 33.09%       | 76.098 V | NG              |
| 28    | 21/10/2013 19:06:42.772.153 | Swell | 0 - 00:00:00.050091000        | 27.90%       | 64.174 V | NG              |
| 1,294 | 23/10/2013 13:20:03.005.678 | Swell | 0 - 08:31:49.181644700        | 27.30%       | 62.779 V | NG              |
| 2,244 | 25/10/2013 21:36:32.656.549 | Swell | 0 - 00:00:00.059933600        | 26.05%       | 59.916 V | NG              |
| 2,196 | 25/10/2013 21:27:01.410.350 | Swell | 0 - 00:00:00.039888400        | 25.89%       | 59.558 V | NG              |
| 812   | 22/10/2013 19:13:07.753.516 | Swell | 0 - 00:00:00.040034300        | 25.49%       | 58.636 V | NG              |
| 2,194 | 25/10/2013 21:26:56.834.019 | Swell | 0 - 00:00:00.039966300        | 24.43%       | 56.187 V | NG              |
| 2,235 | 25/10/2013 21:34:06.588.812 | Swell | 0 - 00:00:00.040027100        | 23.03%       | 52.975 V | NG              |
| 2,195 | 25/10/2013 21:26:58.962.196 | Swell | 0 - 00:00:00.039959800        | 22.87%       | 52.594 V | NG              |
| 2,198 | 25/10/2013 21:27:15.579.415 | Swell | 0 - 00:00:00.039965800        | 22.69%       | 52.191 V | NG              |
| 2,207 | 25/10/2013 21:28:48.591.284 | Swell | 0 - 00:00:00.039974100        | 21.65%       | 49.798 V | NG              |
| 2,242 | 25/10/2013 21:35:52.533.829 | Swell | 0 - 00:00:00.039952400        | 21.61%       | 49.696 V | NG              |
| 2,239 | 25/10/2013 21:34:45.050.995 | Swell | 0 - 00:00:00.039946400        | 21.03%       | 48.369 V | NG              |

### The neutral to ground impulses :

![](_page_15_Figure_5.jpeg)

### Event Summary

![](_page_16_Figure_2.jpeg)

Plot of events on a CBEMA voltage tolerance curve

![](_page_16_Picture_4.jpeg)

## CONCLUSION

• The summary of events at SSB 'CL':

|   | Event recorded                                                 | Caused by                                                                          | Effect to the system    |
|---|----------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|
| 1 | Voltage fluctuation<br>> 6% (i.e >13.8V) of<br>nominal voltage | <u>High system impedance</u> and<br>exaggerates the effect of current<br>increases | Voltage swells          |
| 2 | Significant Voltage                                            | Loose or defective wiring, such as                                                 | Electrical distribution |
|   | drop & Current                                                 | insufficiently tightened screws                                                    | system SSB'CL' has      |
|   | increase (or vice                                              | connection on power conductors or                                                  | high system             |
|   | versa)                                                         | corroded connections                                                               | impedance               |
| 3 | Unbalance Neutral                                              | I <sub>N</sub> > the earth fault relay pick up                                     | Nuisance tripping to    |
|   | Current, I <sub>N</sub>                                        | current i.e 50 A (for this SSB 'CL')                                               | the MCCB                |

![](_page_17_Picture_3.jpeg)

## CONCLUSION

|   | Event recorded                                                                                         | Caused by                                                                                                                                                                                                         | Effect to the system                                                                                                                                               |
|---|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | <b>High Neutral to</b><br><b>Ground Voltage</b> ,<br>V <sub>NG</sub> (> 10V of the<br>nominal voltage) | <ol> <li>indicates a         <u>loose/corrode</u> <u>connection</u> at the         ground electrode     </li> <li>caused by the <u>volt drop</u></li> <li>along the resistance of</li> <li>the neutral</li> </ol> | <ol> <li>contributes to the<br/>power quality problem</li> <li>some of the sensitive<br/>loads are disrupted or<br/>damaged</li> </ol>                             |
| 5 | Neutral to ground<br>impulse                                                                           | Neutral to ground impulses<br>indicate that there are<br><u>wiring errors</u> in the<br>electrical wiring installation<br>(intermittent single line-to-<br>ground fault)                                          | Neutral to ground impulses<br>can result in equipment<br>damage over time and also<br>can cause nuisance tripping<br>of Residual Current Circuit<br>Breaker (RCCB) |
| 6 | Overvoltages                                                                                           | the insulation of the equipment                                                                                                                                                                                   | shorten the lifespan of the equipment                                                                                                                              |

![](_page_18_Picture_2.jpeg)

### Improvement of Electrical Wiring Installation

- 1. Check the wiring installation of the electrical system and correct all the wiring errors such as improper neutral-to-ground bond, intermittent single line-to-ground fault and improper cable joint.
- 2. Check for loose neutral connections.

![](_page_19_Picture_4.jpeg)

3. Inspect the wiring for other equipment, light fittings etc. for loose joints and terminations.

![](_page_19_Picture_6.jpeg)

4. To mitigate high neutral-to-ground voltage, it is recommended to install an isolation transformer connected as separately derived system. The transformer should be placed near to the load.

![](_page_20_Figure_2.jpeg)

To separate dedicated nonlinear loads, linear loads and an isolation transformer is used for sensitive equipment

![](_page_20_Picture_4.jpeg)

### Improvement of Grounding System

1. Connection between grounding conductor to the ground electrode at the transformer and main switchboard (MSB) should be by exothermic weld, not clamps that can loosen over time.

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

2. Only <u>one ground electrode system at the MSB should</u> <u>be implemented</u>. A separate ground electrode should never be used to ground any piece of electrical equipment. Separate ground electrodes always create two ground references at different potentials, which in turn cause a "ground loop" current to circulate in an attempt to equalize those potentials. In the case of lightning strikes, surge currents travelling to ground at different earth potentials will create hazardous potential differences.

![](_page_22_Picture_2.jpeg)

Immediate Action to be taken

- Redistribute final circuit loads to improve balance of the three phases. The maximum unbalance current should be below the earth fault relay pick up current.
- 2. Reduce the supply voltage to the nominal value by changing the position of the tap-changer of the transformer.

![](_page_23_Picture_4.jpeg)

## Impact to Politeknik Administration

- The report will be send to the polytechnic for their action:
- Inform maintenance department to identify repair work to carried out
- Get estimation for the maintenance allocation

![](_page_24_Picture_4.jpeg)

# ...THANK YOU

![](_page_25_Picture_1.jpeg)

Politeknik Seberang Perai P.Pinang