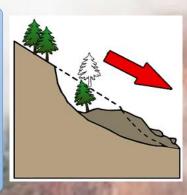
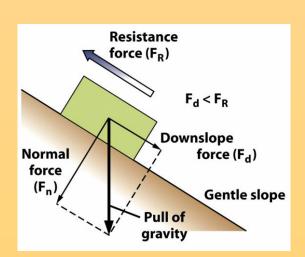
An Overview on Slope Stability & Slope Failures



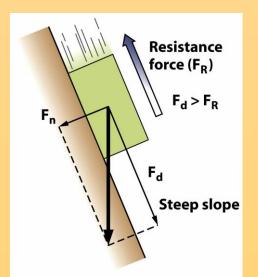
by Sharan Kumar Nagendran Makmal Penyelidikan Geoteknik (MPG)

Slope Stability


- Slope failure referred to as mass wasting, is the downslope movement of rock debris and soil in response to gravitational stresses.
- Slope stability is based on the interplay between **Driving** and **Resisting** forces.

Downslope forces = Gravity

Does gravity act alone? NO!! Slope angle, climate, slope material, and water contribute to the effect of gravity.


- The weight of Earth materials.
- The weight of added water.
- The weight of added structures.

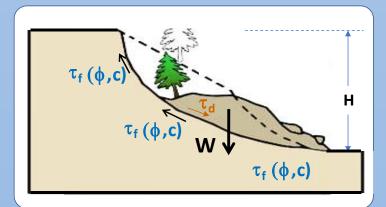
Resisting forces = Shear strength

Shear strength is a function of cohesion (ability of particles to attract and hold each other together) and internal friction (friction between grains within a material).

- Chemical weathering weakens slope material.
- ✓ Internal Friction between grains within a material.

F_s is the ratio of resisting forces to the driving forces, or

Shear strength (resisting movement) average shear strength of the soil.


$$au_f = c' + \sigma' an \phi'$$
 (Available)

$$F_s = \frac{\tau_f}{\tau_d}$$

Shear stress (driving movement) average shear stress developed along the potential failure surface.

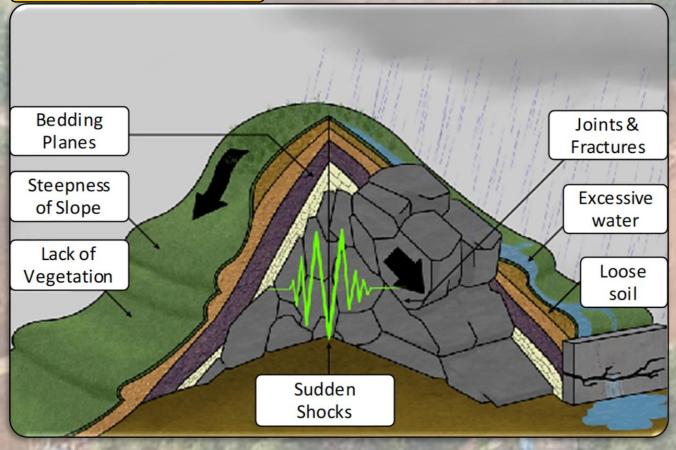
$$\tau_d = c'_d + \sigma' \tan \phi'_d$$
 (developed)

- ✓ Generally, FS ≥ 1.5 is acceptable for the design of a stable slope
- ✓ If factor safety F_s equal to or less than 1, the slope is considered in a state of impending failure.

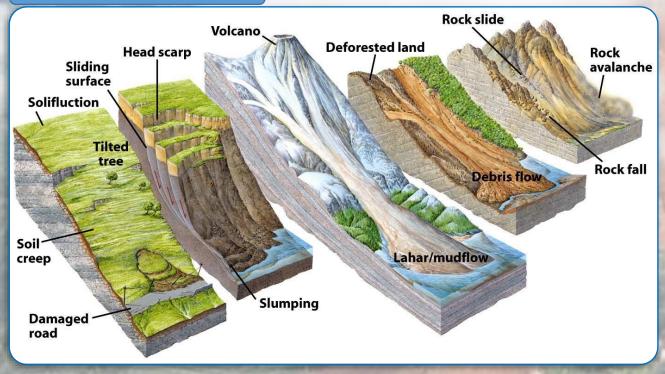
 $F_s < 1 \rightarrow unstable$ $F_s ≈ 1 \rightarrow marginal$ $F_s >> 1 \rightarrow stable$

$$F_s = \frac{c' + \sigma' \tan \phi'}{c'_d + \sigma' \tan \phi'_d}$$

Where: c' = cohesion $\phi' = angle of internal friction$ $c'_d, \phi'_d = cohesion and angle of$ friction that develop along the potential failure surface

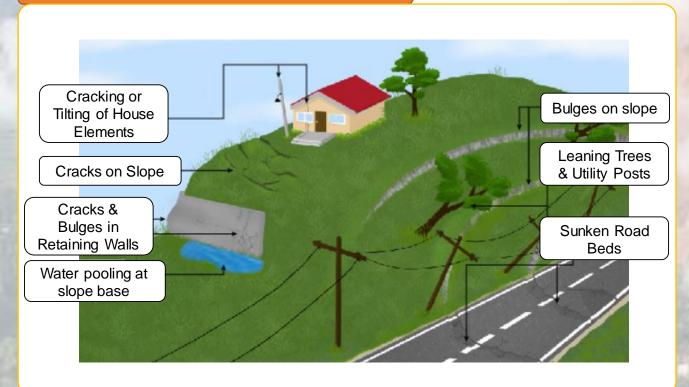

Types of Slopes

Slopes can be categorized into two groups:-

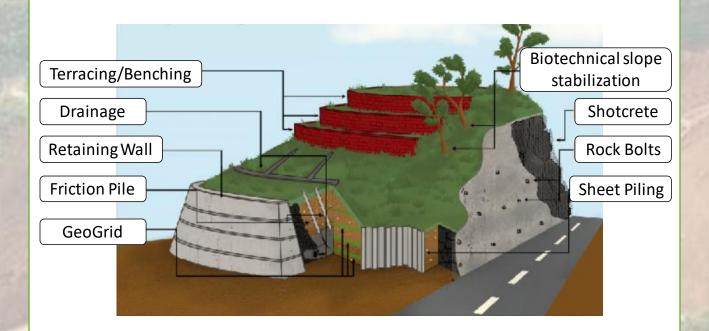

- A. Natural slope
 - ✓ Hill sides
 - Mountains
 - River banks
- B. Man-made slope
 - ✓ Fill (Embankment)
 - ✓ Earth dams
 - ✓ Canal banks
 - ✓ Excavation sides
 - Trenches
 - Highway Embankments

100 A. Natural Slope - 10 A Natural Slope (No grading Conducted) I I., I Jsually soil profile over bedrock B. Man-made Slope "Cut Manufactured Slope (Grading required to construct slope) I I. "Fill" Original Ground Surface

Causes of Slope Failure



Types of Mass Wasting



Type of Movement		Material Involved	
		Rock	Soil
Falls		Rockfall	Soilfall
Slides Rotational Translational 		Rock slump block Rock slide	Soil Slump Block Debris Slide
Slov	V	Rock Creep	Soil Creep
Flows	t	Earthflow Mudflow Debris Flow Debris Avalanche	
Complex		Combinations of two or more types of movement	

Indication of Impending Slope Failure

Slope Stabilization/Repair Method

National Slope Master Plan (2009-2023)

- ✓ Study commissioned by Cawangan Kejuruteraan Cerun (CKC), JKR from 2006-2008
- ✓ Goal : To reduce ricks and losses due to landslides nationwide
- ✓ 10 components or areas of concentration
- ✓ 34 strategies and 77 actions plans

National Slope Master Plan Component

Role of JKR in Slope Management

- ✓ Slope Engineering Branch (CKC) under JKR was formed after a rockslide at NKVE near Bukit Lanjan (Feb 2004)
- The latest slope assessment systems for predicting landslides at the micro level of assessment developed by the JKR is the Slope Management and Risk Tracking System (SMART)
- ✓ ONLY **Slopes along Federal Roads** Under JKR's Responsibility
- CREaTE have been included under Working Group 5 in Slope Transformation Plan