University of Texas at Arlington Geotechnical Engineering Laboratory

Test Procedure

Standard and Modified Proctor Compaction Test

Lecture Note $\mathbf{6}$ – (Thursday 02-26-04)

Definitions, Objectives and Applications (class notes)

This page intentionally left blank

Principles of Compaction

Figure 2. Standard proctor compaction test (Lambe, 1961)

Standard Compaction Test

Equipment

- 1. Proctor mould with a detachable collar assembly and base plate.
- 2. Manual rammer weighing 2.5 kg and equipped to provide a height of drop to a free fall of 30 cm.
- 3. Sample Extruder.
- 4. A sensitive balance.
- 5. Straight edge.
- 6. Squeeze bottle
- 7. Mixing tools such as mixing pan, spoon, trowel, spatula etc.
- 8. Moisture cans.
- 9. Drying Oven

Test procedure

- 1. Obtain approximately 10 lb (4.5 kg) of air-dried soil in the mixing pan, break all the lumps so that it passes No. 4 sieve.
- 2. Add <u>approximate</u> amount of water to increase the moisture content by about 5%.
- 3. Determine the weight of empty proctor mould without the base plate and the collar. W₁, (lb). (Row #1 of the table)
- 4. Fix the collar and base plate. (Ask your instructor regarding how to fill the mould and take the steps 5 and 6)
- 5. Place the first portion of the soil in the Proctor mould as explained in the class and compact the layer applying 25 blows.
- 6. Scratch the layer with a spatula forming a grid to ensure uniformity in distribution of compaction energy to the subsequent layer. Place the second layer, apply 25 blows, place the last portion and apply 25 blows.

- 7. The final layer should ensure that the compacted soil is just above the rim of the compaction mould when the collar is still attached.
- 8. Detach the collar carefully without disturbing the compacted soil inside the mould and using a straight edge trim the excess soil leveling to the mould.

- 9. Determine the weight of the mould with the moist soil W₂, (lb). Extrude the sample and break it to collect the sample for water content determination preferably from the middle of the specimen.
- 10. Weigh an empty moisture can, W₃, (g) and weigh again with the moist soil obtained from the extruded sample in step9, W₄, (g). Keep this can in the oven for water content determination.
- 11. Break the rest of the compacted soil with hand (visually ensure that it passes US Sieve No.4). Add more water to increase the moisture content by 2%.
- 12. Repeat steps 4 to 11. During this process the weight W₂ increases for some time with the increase in moisture and drops suddenly. Take two moisture increments after the weights starts reducing. Obtain at least 4 points to plot the dry unit weight, moisture content variation.
- 13. After 24 hrs recover the sample in the oven and determine the weight W_{5} (g).
- 14. Fill out the following table completely; Calculate rows 9 and 10, these two will give one point of the plot.

Notice that; <u>The modified compaction procedure</u> is similar to the above with a change in the compactive effort. The rammer used in the modified compaction is a **10 lb** with a height of drop of **18**".

Calculations and reporting the results

	Test #	1	2	3	4	5
1.	Weight of the mold with out the base and collar, W_1 , (lb)					
2.	Weight of the mold + moist soil, W_2 (lb)					
3.	Weight of the moist soil, W ₂ -W ₁ , (lb)					
4.	Moist unit weight, $\gamma = [(W_2-W_1)/(1/30)], (lb/ft^3)$					
5.	Moisture can number					
6.	Weight of moisture can, W ₃ , (g)					
7.	Mass of can + moist soil, W ₄ , (g)					
8.	Mass of can + dry soil, W_5 , (g)					
9.	Moisture content: w(%)= [(W ₄ -W ₅)/(W ₅ -W ₃)] x 100					
10.	Dry unit weight of compaction: $\gamma_d (lb/ft^3) = \gamma_t / [1+(w/100)]$					