

Cawangan Kejuruteraan Elektrik

Contents

1. General Principles

- 1.1 Scope
- 1.2 References
- 1.3 Terms & definitions
- 1.4 Lightning current parameters
- 1.5 Lightning in Malaysia
- 1.6 Damage due to Lightning
- 1.7 Theory of Lightning

2. Risk Management

Contents

3. Physical Damage to Structures/ Buildings & Life Hazard

- 3.1 External LPS
- 3.2 Internal LPS
- 3.3 LPS Design
- 3.4 LPS Components
- 3.5 Materials & dimensions
- 3.6 Separation distance
- 3.7 Protection against touch & step voltages
- 3.8 Lightning protection design process

Contents

- 3.9 Site Coordination
- 3.10 Misconceptions About Lightning
- 3.11 Non-conventional LPS

1.1 Scope

What is Lightning Protection System?

- ➤ IEC 62305-1 Complete system used to reduce physical damage due to lightning flashes to a building
- It consists of both external and internal LPSs.

1.1 Scope

Lightning Protection System

LPS

External Lightning Protection

- Air termination systems
- Down conductor systems
- Earth termination system
- Components
- Materials & Dimensions

Internal Lightning Protection

- Lightning equipotential bonding
- Electrical insulation / separation of the external LPS
- SPDs

1.2 References

- ➤ IEC 62305-1 Part 1: General Principles
- ➤ IEC 62305-2 Part 2: Risk Management
- ➤ IEC 62305-3 Part 3: Physical Damage to Structure and Life Hazard
- ➤ IEC 62305-4 Part 4: Electrical and Electronic Systems within Structures
- ➤ IEC 62561 series: Lightning Protection Components

1.2 References

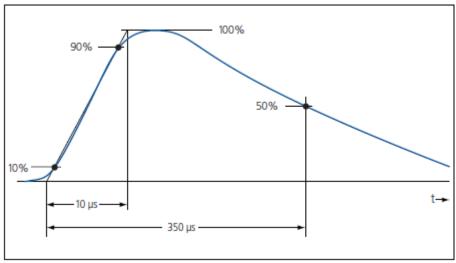
Akta Bekalan Elektrik 1990 (Akta 447): Seksyen 47. Langkah awasan terhadap elektrik atmosfera.

Mana-mana jabatan Kerajaan Persekutuan atau manamana Kerajaan Negeri atau mana-mana pengguna lain yang mengambil atau menggunakan elektrik daripada mana-mana pepasangan hendaklah, jika Suruhanjaya menghendaki sedemikian, memperuntukkan apa-apa kaedah bagi menghindarkan apa-apa risiko kerosakan kepada pepasangan itu melalui elektrik atmosfera sebagaimana yang diarahkan oleh Suruhanjaya atau sebagaimana yang ditetapkan melalui peraturanperaturan di bawah Akta ini.

1.3 Terms & Definitions

IEC Terminology

Term	Definition	
Lightning stroke	Single electrical discharge in a lightning flash to earth	
Lightning flash to earth	Electrical discharge of atmospheric origin between cloud and earth consisting of one or more strokes	


Common vs IEC Terminology

Common Terminology	IEC Terminology
Lightning strike	Lightning flash/stroke
Discharge current	Lightning current

1.4 Lightning Current Parameters

As shown in figure, lightning current waveshape, the front time (also known as rise time) is 10 μs duration and the time to decay to 50% (also known as tail time) is 350 μs.

Waveshape

 Malaysia is a <u>tropical country</u> which has recorded a high number of lightning strikes and thunderstorm activity throughout the year

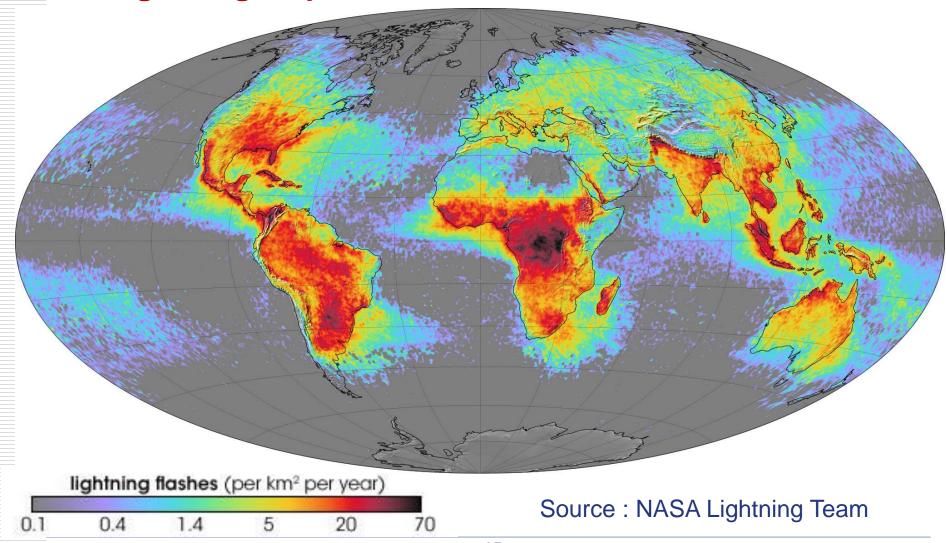
Thunderstorm Day & Ground Flash Density in Malaysia

- Lightning ground flash density (N_g) defined as the number of cloud-to-ground flashes per square kilometer and per year (km⁻² yr⁻¹)
- Is an important meteorological data that is used in calculating the risk of lightning strikes to a building
- N_g can be captured or calculated from the Annual Thunderstorm days T_D (keraunic level)

Malaysian Meteorological Department (MMD) has recorded more than 200 thunderstorm days per year in Malaysia (T_D).

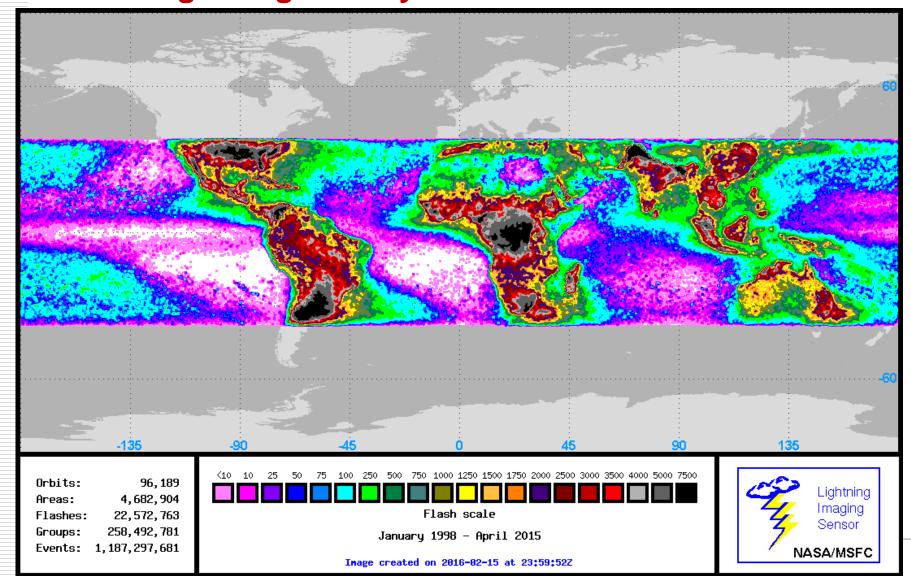
Among the top 3 in the world

Thunderstorm Days Per Year Worldwide				
Bogor, Indonesia (1988)	322			
Cerromatoso, Columbia	275-320			
Malaysia	180-260			
Singapore	160-220			
Florida, U.S.	90-110			
Colorado, U.S.	65-100			
Brazil	40-200			
Argentina	30-200			
Japan	35-50			
Most of Europe	15-40			
Australia	10-70			
England	5-10			



➤ TNBR has recorded as high as 484.4 kA lightning impulse current in Malaysia using their Lightning Detection Network (LDN)

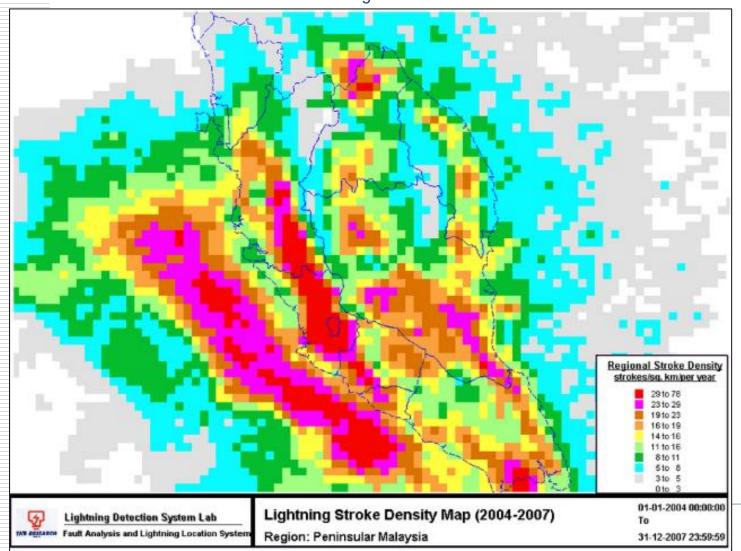
Top Lightning Flash Density, N _g (ground strikes per km/sq) Sites Worldwide					
Kamembe, Rwanda	82.7				
Boende, Dem. Rep. Congo	66.3				
Lusambo, Dem. Rep. Congo	52.1				
Kananga, Dem. Rep. Congo	50.3				
Kuala Lumpur, Malaysia	48.3				
Calabar, Nigeria	47.3				
Franceville, Gabon	47.1				
Posadas, Argentina	42.7				
Ocana, Colombia	39.9				
Concepcion, Paraguay	37.0				



World Lightning Map

Pattern of Lightning Activity

Pattern of Lightning Activity


Annual Thunderstorm Day (T_D) Figures for the Year 1993 to 2002 (Hartono 2003)

Major towns/cities	10-year TD Avc.	Max T_D	Min T _D
Langkawi	101	136	90
Alor Star	165	197	145
Butterworth	172	183	164
Bayan Lepas	202	239	185
Ipoh	165	200	135
Sitiawan	193	235	179
Subang	188	195	180
Malacca	137	165	103
Kluang	191	222	165
Senai	172	206	159
Mersing	1 <u>71</u>	188	151
Kuantan	154	173	128
Termeloh	112	156	92
Kuala Trengganu	163	184	141
Kota Baru	115	146	94
Kuala Krai	161	177	149
Kuching	184	231	151
Sri Aman	105	132	78
Sibu	103	115	85
Bintulu	133	180	102
Miri	88	101	68
Labuan	147	164	112
Kota Kinabalu	139	158	113
Kudat	79	96	60
Sandakan	155	193	118
Tawau	84	124	45

Pattern of Lightning Activity

Lightning Flash Density (N_q) for Peninsular Malaysia (2004 – 2007) (TNBR)

 $N_g = 0.1T_D$

Malaysia encounters more than 70% of power outages due to lightning

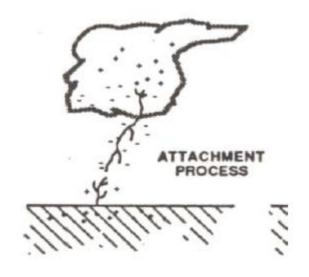
1.6 Damage Due to Lightning

Damage to a structure

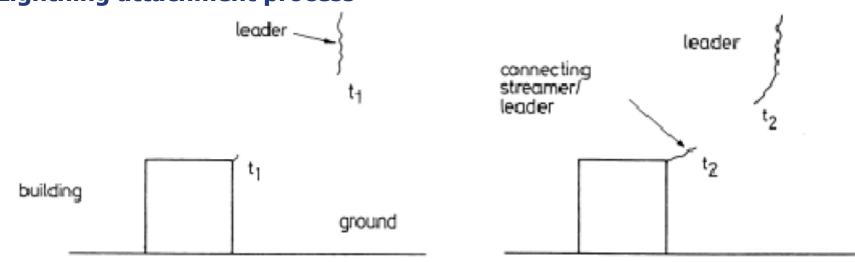
- Construction (e.g. wood, brick, concrete etc.)
- Occupants (persons and animals)
- Connected lines (power lines, telecommunication lines, pipelines)

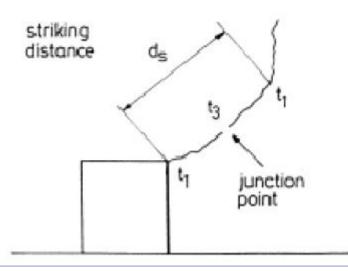
1.6 Damage Due to Lightning

Kes-Kes Panahan Petir di Malaysia

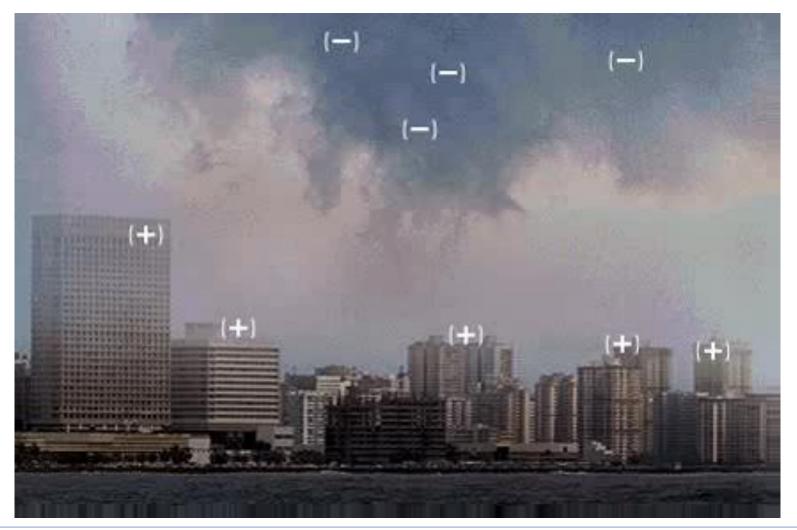


Putrajaya

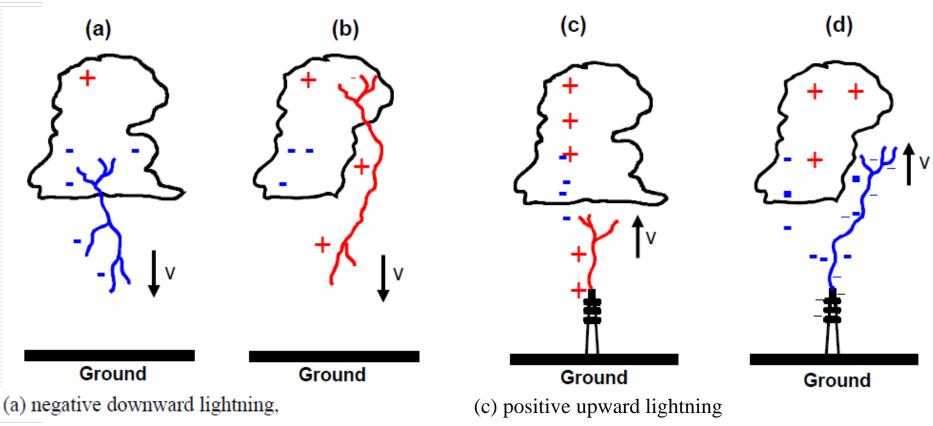



 Lightning attachment occurs when a discharge from a thundercloud attaches itself to an object on the ground

Lightning attachment process



*Darveniza et al (1997)



Lightning attachment process

Types of Lightning to Ground

(b) positive downward lightning,

(d) negative upward lightning

- Lightning strikes thousands of structures on the ground annually
- In most cases, they attach themselves to the corners and edges
- Sometimes it strikes the highest point of a structure

Lightning attachment to structure [Photo: The Star Publications]

 On rare occasions, lightning can also strike the sides of tall structures

[Photo: K. Ambrose]

Lightning attachment to structure

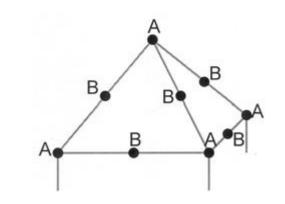
Lightning attachment to structures

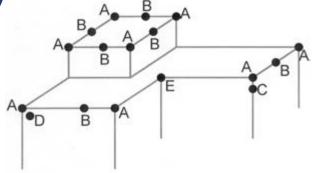
- Studies on high-rise buildings with lightning attachment points in Kuala Lumpur and Singapore revealed a regular pattern of occurrence
- Lightning attachment points seemed to accumulate at corners, exposed points and edges

^{*} CIGRE C4 Colloquium 2010, Kuala Lumpur

Lightning attachment to structures

 The higher the structure height, the higher the chances of getting struck by the lightning, although that is not always going to be the case




Lightning attachment to structures

- A: Exposed corners and points (>90%)
- B: Straight or curved horizontal edges (<5%)

- D: Flat surfaces near A (<1%)
- E: Included corners, etc. (0%)

^{*(}Hartono & Robiah 1995, 2000)

Exposed corners and points

(Photo: Hartono)

Exposed edges

(Photo: Hartono)

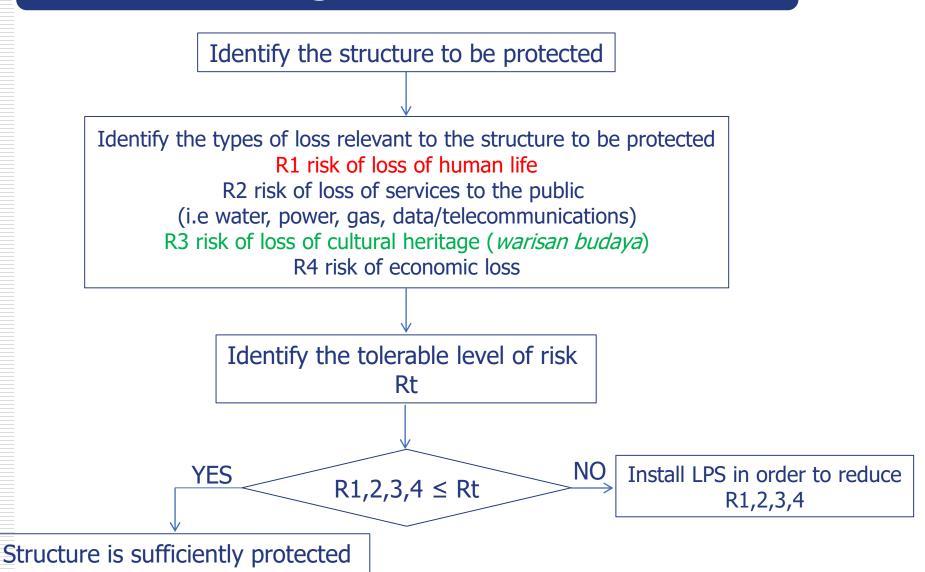
Scope

- IEC 62305-2 is applicable to <u>risk assessment</u> for a building due to lightning flashes to earth
- Purpose: evaluation of a risk
- This risk assessment allows the selection of appropriate protection measures (Lightning Class) to be adopted to reduce the risk

Terms and definitions

- Urban environment
 - area with a <u>high density</u> of buildings or densely (crowded)
 populated communities with tall buildings
 - 'Town Centre' is an example of an urban environment.
- Suburban environment
 - area with a <u>medium density</u> of buildings
 - 'Town outskirts' is an example of a suburban environment
- Rural environment
 - area with a <u>low density</u> of buildings
 - 'Countryside' is an example of a rural environment

- To determine if lightning protection is required
- If so, to select the appropriate lightning class (I,II,III,IV)
- To determine values of rolling sphere radius
- To determine the protective angle
- To determine values of mesh size
- To determine no. of down conductors
- To determine the separation distance


- Lightning protection can be installed even when the risk assessment process may indicate that it is not required.
- A greater level of protection than that required may also be selected.
- IEC 62305-2 standard is over 100 pages in length and is extremely comprehensive and complex.
- Manual calculation of risk assessment can take 10 hours to complete.
- Therefore, a reduced analysis is conducted, with an electronic tool.
- Third-party software is also available.

Four classes of LPS are defined in IEC 62305-2 corresponding to lightning protection level

LPL	Class of LPS
I	I
II	II
III	III
IV	IV

✓ IEC Risk Assessment Calculator Proje	ect:								
File Options Library Help									
Structure's Dimensions: —		С	onductive Electric S	ervice Lines: —			Types of Los	s: 	
Length of structure (m):	160	Power Line:				Type 1 - Loss of Hun	an Life:		
Width of structure (m):	160	Type of service t	to the structure:	Buried cable	•	Special hazards to I	ife: Av	erage panic level	•
	30	Type of external	cable:	Screened	•	Life loss due to fire:	Co	mmercial, schools	. •
Height of highest roof protrusion (m)* *Measured from the ground	50	Presence of MV	/LV transformer:	Transformer	•	Life loss due to ove	voltages: No	t relevant	•
	108,647 m2	Other Overhead S	ervices:			Type 2 - Loss of Ess	ential Public Servic	ces:	
0		Number of condu	uctive services:	0	4	Services lost due to	fire:	No service exist	-
Structure's Attributes:		Type of external	cable:	0		Services lost due to	,	No service exist	
Risk of physical damage (incl. fire): Ordin	nary 🔻	Type of external	cobie.	Screened		Delvices lost due to	overvoltages.	No service exist	•
Structure screening effectiveness:	rage 🔻	Other Undergroun	d Services:			Type 3 - Loss of Cult	ural Heritage:		
Internal wiring type: Unso	creened	Number of conductive services: 5							
Environmental Influences: Type of external cable: Screened Type 4 - Economic Loss:									
1									
	ted structure	'				Special hazards to	1	o special hazards	
Environmental factor: Subu	urban		Protection Mea	sures:		Economic loss due	Jou	ommercial property	√ ▼
Number thunderdays: 5 day	/s/year	Class of LPS:	[c	Class IV	_	Economic loss due	,	ther structures	▼
Annual ground flash density: 0.5 fl	lashes/km2	Fire protection pro	visions:	Automated system	ms 🔻	Step/touch potentia	1	o shock risk	
View isokeraunic map:	View <u>M</u> ap	Surge protection:	ļ	Coord. SPD IEC 6	62305-4 •	Tolerable risk of ec	onomic loss: 1 i	in 1,000	
r Calculated Risks:		1				_		risk assessment ca	
Tolera	able Risk (Rt)	Direct Strike Risk (Rd)	Indirect St Risk (P		Calculated Risk (R)	IEC	criteria to determi: lightning. It is not p	t in the analysis of vi ne the risk of loss di oossible to cover ea nat may render a stri	ue to ach special
Loss of Human Life: 1.00E-	-05 =>	5.49E-06	+ 7.95E-07	= 6	.28E-06	— •	more or less susc	ceptible to lightning of ersonal and econom	damage. Ir
Loss of Public Services: 1.00E-	-03 =>	0.00E+00	+ 0.00E+00	= 0	.00E+00		may be very impo considered in add	ortant and should be dition to the assessr	e ment
Loss of Cultural Heritage: 1.00E-		0.00E+00	+ 0.00E+00	= 0	.00E+00			of this tool. It is intend n conjunction with th	
Economic Loss: 1.00E-	-03 =>	4.51E-06	* 2.55E-06	= 7	.06E-06	Calculations	sianuaru IEC6230	JU-2.	
					Project: MASDAR	CARPARK - X04 Tooltips:	ON Database: v1.0.	3 Map: ENGLISH	9/28/2009

Primary risks

Following primary risks (R_n) relate to corresponding types of loss (L)

- R₁ Risk of loss of human life
- R₂ Risk of loss of services to the public
- R₃ Risk of loss of cultural heritage
- R₄ Risk of loss of economic value

R_2 – Risk of loss of <u>services</u> to the public

- "services" water, power, gas, fuel or data/telecommunications
 - any type of company who, due to lightning damage, cannot provide their "service" to the public.

(e.g. Supermarket closed due to damage to cash register or a Bank unable to transact business due to phone or website failure)

Risk Criteria

Protection against lightning is required if the primary risk R_n (whether that is R_1 or R_2 or R_3 or R_4) is greater than the tolerable level of risk R_T

If
$$R_n \le R_T$$
 No LPS required
If $R_n > R_T$ LPS is required

 R_T = max value of the risk which can be tolerated for the building to be protected

Identification of Tolerable Risk R_T

Types of Loss	R _T / annum
Loss of human life or permanent injury	1 x 10 ⁻⁵
Loss of service to the public	1 x 10 ⁻³
Loss of cultural heritage	1 x 10 ⁻³
Loss of economic value	1 x 10 ⁻³

If risk R_n is less than or equal to value of R_T – structure doesn't require protection

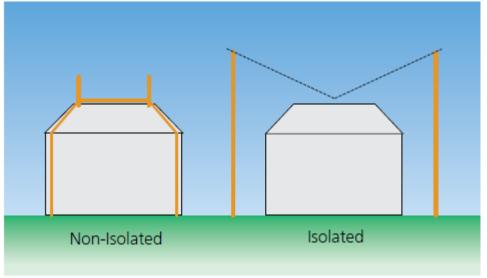
If risk R_n is greater than R_T – structure require protection and further calculation will determine exactly what type of protection is required.

3.1 External LPS

- intercept a lightning flash to the structure/building (with an air-termination system)
- conduct the lightning current safely towards earth (using a down-conductor system)
- disperse the lightning current into the earth (using an earth-termination system).

3.2 Internal LPS

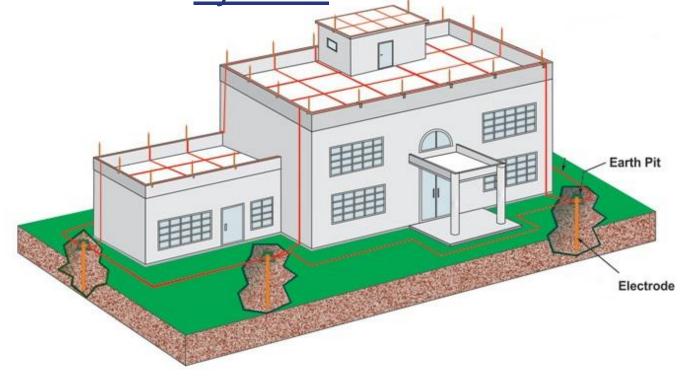
 prevents dangerous <u>sparking</u> within the structure/building using either <u>equipotential</u> <u>bonding</u> or a <u>separation distance</u> (electrical insulation) between the external LPS components and other electrically conducting elements internal to the structure.


The design of a lightning protection system needs to:

- Intercept lightning flash (i.e. create a preferred point of strike)
- Conduct the lightning current to earth
- Dissipate current into the earth
- Create an equipotential bond to prevent hazardous potential differences between LPS, structure and internal equipment/circuits

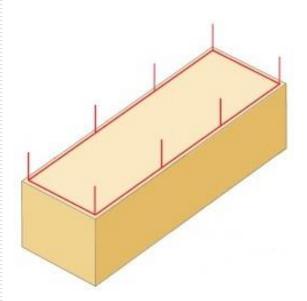
Protection Methods & Risks

 Lightning protection systems typically follow two approaches:

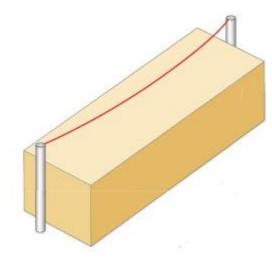


- A. Air termination system
- B. Down conductor system

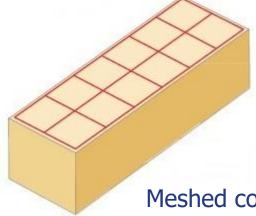
C. Earth termination system



A. Air termination <u>system</u>


Components

- 1. Rods
 - the individual rods <u>should</u> be connected together at roof level to ensure current division
- 2. Catenary wires
- 3. Mesh conductors
- 4. Natural air termination components (metal sheets, railings, coverings of parapets, metal pipes, tanks)



Air rods (finials)

Catenary (or suspended) wires

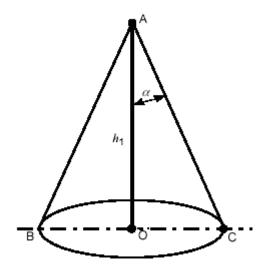
Natural air termination components

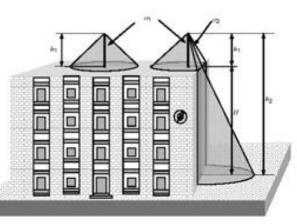
	Minimum thick	ness (mm)
Material	Puncturing, hot spot or ignition <u>not</u> permitted	Puncturing, hot spot or ignition permitted
Lead	Not suitable	2
Steel	4	0.5
Titanium	4	0.5
Copper	5	0.5
Aluminum	7	0.65
Zinc	Not suitable	0.7

Air rod

A. Air termination <u>system</u>

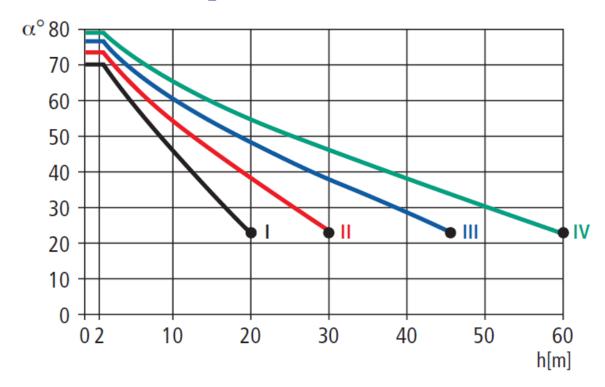
Methods for determining the POSITION of the Air Termination System


- 1. Protection angle method
 - subject to limits in Figure below
- 2. Rolling sphere method
 - suitable in all cases
- 3. Mesh method
 - suitable for flat surfaces

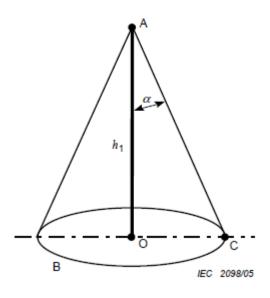


1. Protection angle method (PAM)

- Developed by Gay Lussac in 1823
- Air terminal/rod provide a protection zone in the shape of an imaginary cone
- Lightning will attach on the tip of the cone
- Objects within the imaginary cone is protected from lightning strokes
- Method was found to be unsuitable for highrise structures


[Note: Diagrams from IEC 62305]

1. Protection angle method

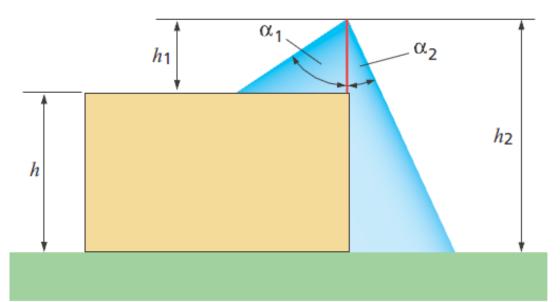

Note 1: Not applicable beyond the values marked with • Only rolling sphere and mesh methods apply in these cases

Note 2: h is height or air-termination above the reference plane of the area to be protected.

Note 3: The angle will not change for values of h below 2m

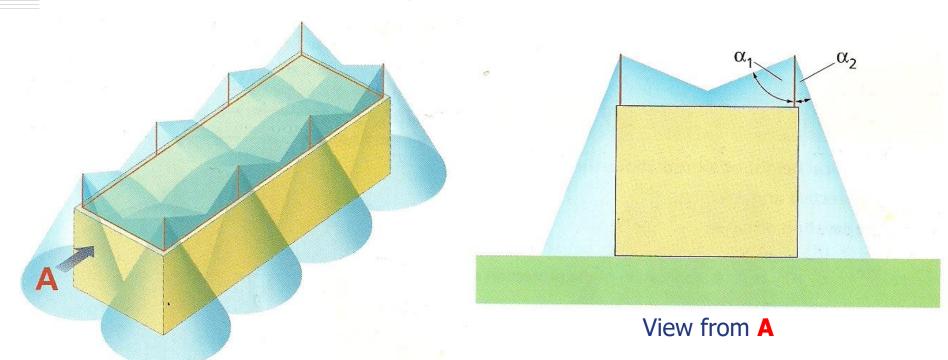
1. Protection angle method

Protective angle according to Table 1 is a change to the simple 45⁰ zone of protection in BS 6651

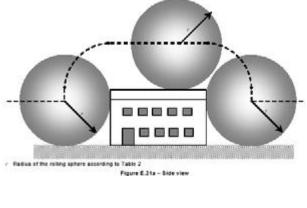

A – tip of air terminal

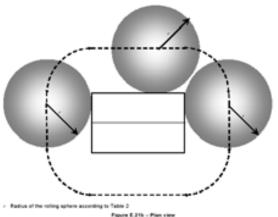
B – reference plane

OC – radius of protected area


h₁ - height of an air terminal above the reference plane of the area to be protected

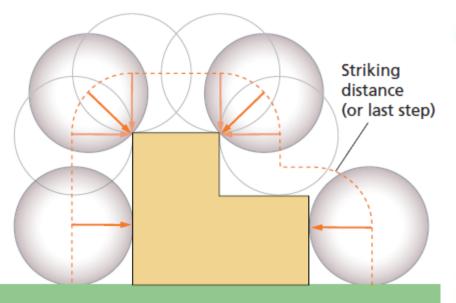
a – protective angle according to <u>Table 1</u>

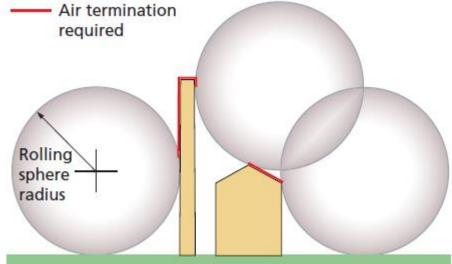

1. Protection angle method



2. Rolling sphere method (RSM)

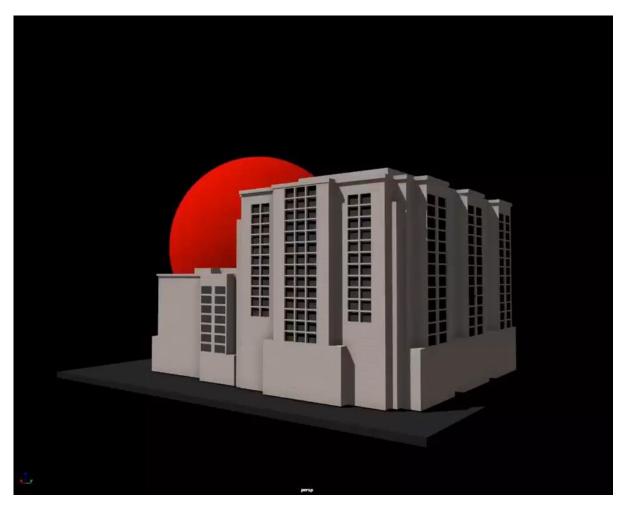
- Developed by Dr. Tibor Horvath in 1950s
- An imaginary sphere is rolled over and around the structure to be protected
- Radius of sphere equal to <u>striking</u> <u>distance</u>
- Parts of structure touched by imaginary sphere are at risk of being struck by lightning
- Applied in international standards since 1970s





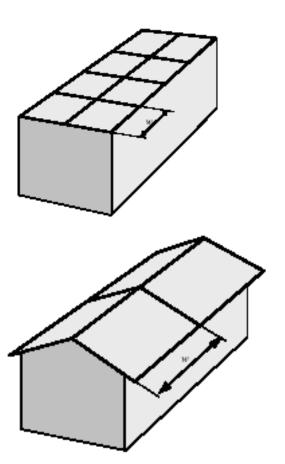
[Note: Diagrams from IEC 62305]

2. Rolling sphere method



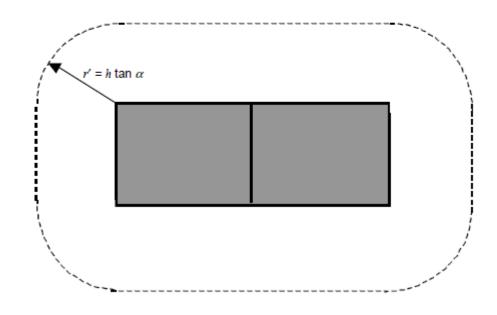
Class of LPS	Rolling sphere radius <i>r</i> (m)
	20
II	30
III	45
IV	60

2. Rolling sphere method (RSM)



3. Mesh method (MM)

- Developed by J.C. Maxwell in 1876
- Lightning will attach to the grid instead of the structure
- Method was found to be very costly and degrade the aesthetics of the structure


[Note: Diagrams from IEC 62305]

3. Mesh method

Class of LPS	Mesh size W (m)
I	5 x 5
II	10 x 10
Ш	15 x 15
IV	20 x 20

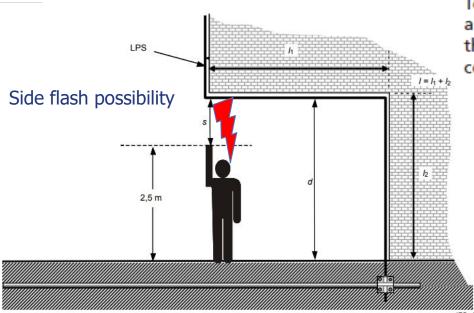
- B. Down conductor <u>system</u>
 - There should always be a min. of 2 down conductors distributed around the perimeter of the structure
 - Down conductors <u>should</u> wherever possible be installed at exposed corner of the structure
 - An equal spacing of the down conductors is preferred around the perimeter
 - It is also good practice for the upper section of the conductor entering into the earth to be insulated. 3 mm thick PVC protecting the first 2-3 m of conductor

 Typical values of the distance between downconductors

Class of LPS	Typical Distances (m)
I	10
II	10
III	15
IV	20

Components

- 1. Copper tapes, aluminium tapes, galvanized steel wires, stainless steel
- 2. Natural down conductors (metal of the reinforced concrete, steel framework)
 - » The electrical continuity of the reinforcing bars shall be determined by electrical testing between the uppermost part and ground level
 - » The overall electrical resistance should not be greater than 0.2 Ω
 - » If this value is not achieved, or it is not practical to conduct such testing, the reinforcing steel shall not be used as a natural down-conductor



Structure with a cantilevered part

Structure with a cantilevered part

To reduce the risk of the person becoming an alternative path for the lightning current to that of the external down conductors, then the following condition should be satisfied:

Class of LPS	k _i
I	0.08
II	0.06
III & IV	0.04

Material	k_m
Air	1
Concrete, bricks, wood	0.5

No. of down- conductors	k_c
1	1
2	0.66
3 and more	0.44

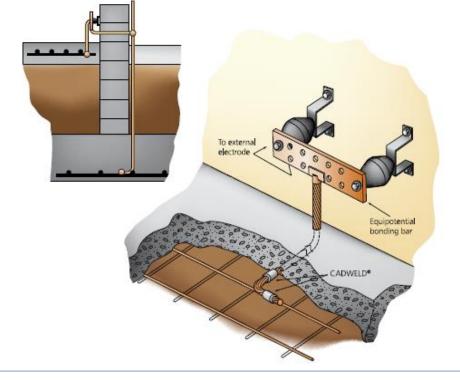
d > 2.5 + s	$s = \frac{k_i}{k_m} \times k_c \times l$
	$l = l_1 + l_2$

Natural down conductor

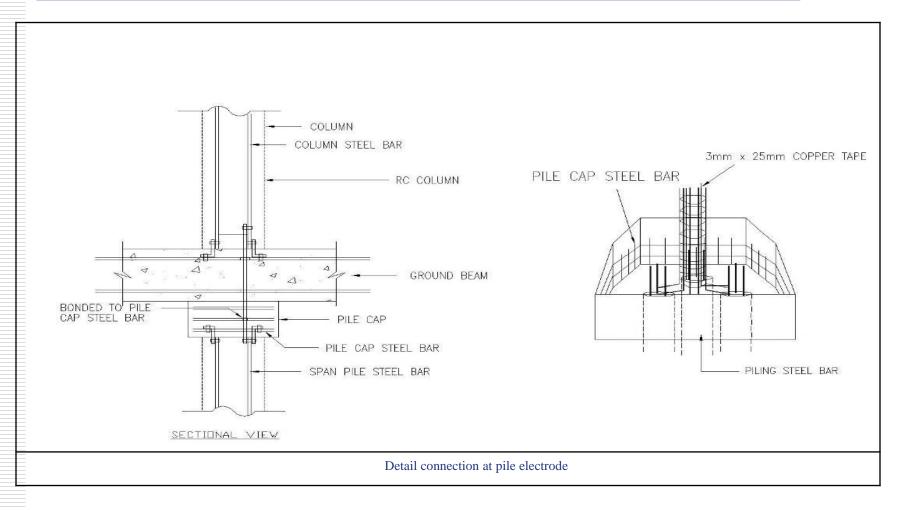
- C. Earth termination <u>system</u>
 - A low earthing resistance is required (with an overall earth termination system of ≤ 10 Ω)
 - 3 basic earth electrode arrangements:
 - Type A arrangement
 - Type B arrangement
 - Foundation earth electrodes

Type A

- Type A arrangement
 - Consist of vertical earth electrodes,
 connected to each down conductor fixed on
 the outside of the structure
 - The horizontal copper tapes shall be buried at a depth ≥ 0.5 m
 - If the 10 Ω value cannot be achieved, it will be necessary to use a Type B ring earth electrode

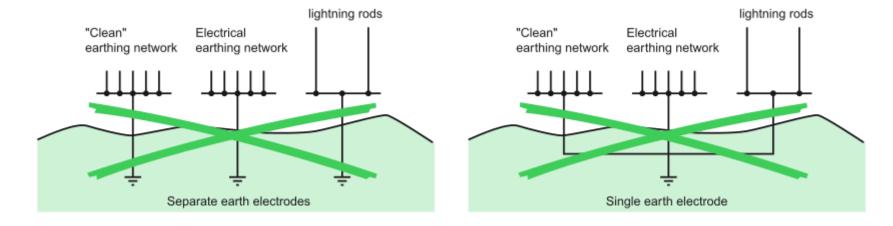

- Type B arrangement
 - Comprise a ring conductor external to the structure
 - The ring copper tapes shall be buried at a depth ≥ 0.5 m
 - Type B arrangement should preferably be buried at a distance of about 1 m around the external walls

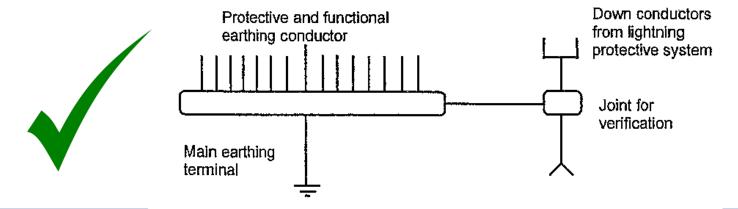
- Foundation earth electrodes
 - This is essentially a type B earthing arrangement


Interconnected reinforcing steel in concrete

foundations

3.3 LPS Design

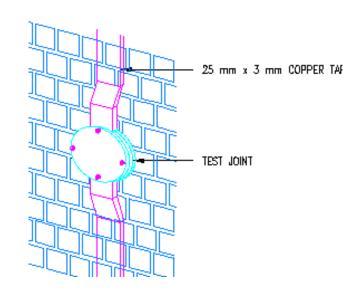



Earth Termination System: Using Steel Piles as an Earth Electrodes

3.3 LPS Design - Interconnection of Earth Electrodes

IEC 60364-4-44:2007 - Protection against voltage disturbances and electromagnetic disturbances

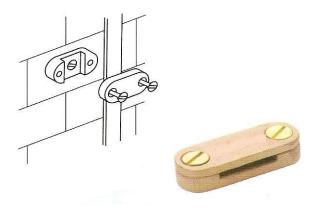



3.4 LPS Components

Selection of components such as rods and clamps shall conform to IEC 62561

Testing joints

- a) At each down conductor
- b) Installed at 2500 mm above ground level





3.4 LPS Components

Made of copper, naval brass or gunmetal

DC Tape Clip

Square Clamp

3.4 LPS Components

Adhesive DC tape clip
Use on metal deck roof

3.5 Materials & Dimensions

Copper versus aluminum

- Aluminium has the advantage of lower cost.
 Its lighter weight
- However, aluminium is less compatible with many building materials and can not be buried in the ground. Therefore, most lightning protection systems are entirely copper
- As aluminium and copper are not compatible, a bimetallic joint should be used to interconnect these two materials.

3.5 Materials & Dimensions

LPS materials and conditions of use

	Use			Corrosion		
Material	In open air	In earth	In concrete	Resistance	Increased by	May be destroyed by galvanic coupling with
Copper	Solid Stranded	Solid Stranded As coating	Solid Stranded As coating	Good in many environments	Sulphur compounds Organic materials	-
Hot galvanized steel	Solid Stranded	Solid	Solid Stranded	Acceptable in air, in concrete and in benign soil	High chlorides content	Copper
Stainless steel	Solid Stranded	Solid Stranded	Solid Stranded	Good in many environments	High chlorides content	-
Aluminium	Solid Stranded	Unsuitable	Unsuitable	Good in atmospheres containing low concentrations of sulphur and chloride	Alkaline solutions	Copper
Lead	Solid As coating	Solid As Coating	Unsuitable	Good in atmosphere with high concentration of sulphates	Acid soils	Copper Stainless steel

3.5 Materials & Dimensions

Material, configuration and minimum csa of air-termination conductors, air-termination rods and down-conductors

Material	Configuration	Minimum cross- sectional area	Comments 10)	
		mm ²		
Copper	Solid tape	50 8)	2 mm min. thickness	
	Solid round 7)	50 8)	8 mm diameter	
	Stranded	50 8)	1,7 mm min. diameter of each strand	
	Solid round 3), 4)	200 8)	16 mm diameter	
Tin plated copper 1)	Solid tape	50 8)	2 mm min. thickness	
	Solid round 7)	50 8)	8 mm diameter	
	Stranded	50 8)	1,7 mm min. diameter of each strand	
Aluminium	Solid tape	70	3 mm min. thickness	
	Solid round	50 8)	8 mm diameter	
	Stranded	50 8)	1,7 mm min. diameter of each strand	
Aluminium alloy	Solid tape	50 8)	2,5 mm min. thickness	
	Solid round	50	8 mm diameter	
	Stranded	50 8)	1,7 mm min. diameter of each strand	
	Solid round 3)	200 8)	16 mm diameter	
Hot dipped galvanized	Solid tape	50 8)	2,5 mm min. thickness	
steel 2)	Solid round 9)	50	8 mm diameter	
	Stranded	50 8)	1,7 mm min. diameter of each strand	
	Solid round 3), 4), 9)	2008)	16 mm diameter	
Stainless steel 5)	Solid tape 6)	50 8)	2 mm min. thickness	
	Solid round 6)	50	8 mm diameter	
	Stranded	70 8)	1,7 mm min. diameter of each strand	
	Solid round 3). 4)	2008)	16 mm diameter	

$$s = \frac{k_i}{k_m} \times k_c \times l$$

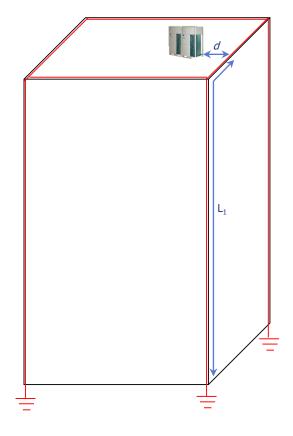
where

 k_i = factor that depends on the selected class of LPS

 k_m = factor that depends on the electrical insulation material

 k_c = factor that depends on the lightning current flowing on the air-termination and the down- conductor

length, along the air-termination and the down-conductor from the point, where the separation distance is to be considered, to the earth termination

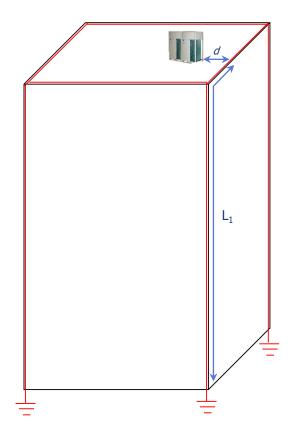

$$s = \frac{k_i}{k_m} \times k_c \times l$$

Class of LPS	k_i
I	0.08
II	0.06
III & IV	0.04

Material	k_m	
Air	1	
Concrete, bricks, wood	0.5	

No. of down- conductors	k_c
1	1
2	0.66
3 and more	0.44

$$l = d + L_1$$



$$s = \frac{k_i}{k_m} \times k_c \times l$$

Bond if s > d

Copper – 6mm2 Aluminium – 8mm2 Steel – 16mm2

$$l = d + L_1$$

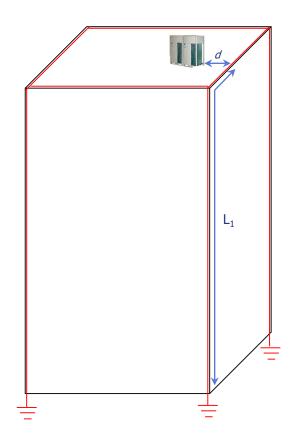
$$S = \frac{k_i}{k_m} \times k_c \times l$$

$$l = d + L_1$$

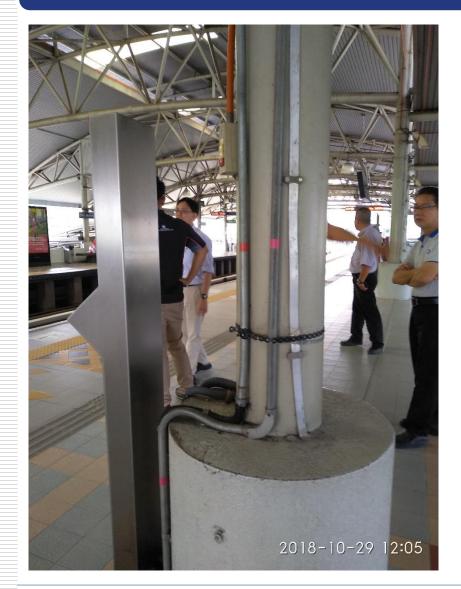
Bond if s > d

Example

The building with 4 down conductors protects a 20 m high building with lighting protection level I


Question:

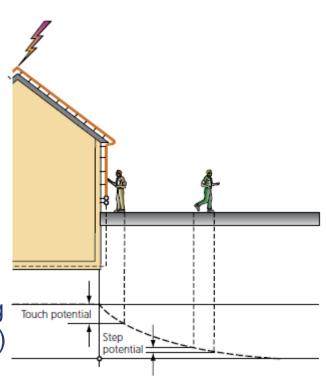
Should an air conditioning outdoor unit located on the roof be interconnected if 3 m away from the air termination network? Length $L_1 = 25$ m


Answer:

$$s = 0.08 \times 0.44 \times 25 / 1 = 0.88 \text{ m}$$

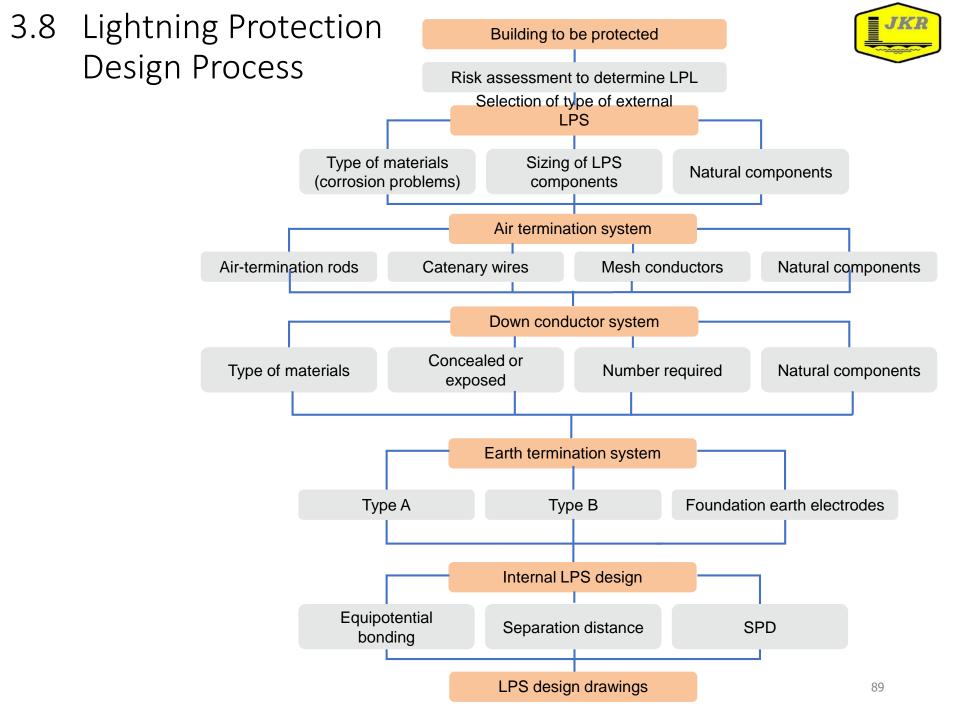
Since the distance (3 m) between the conductor and the air conditioning system is greater than the separation distance (0.88 m), there is no need to interconnect this outdoor unit

3.7 Protection Against Touch & Step Voltages


Main protection measures against injury to living beings due to touch and step voltages are intended to:

- reduce the dangerous current flowing through bodies by <u>insulating</u> exposed conductive parts, and/or by <u>increasing the surface soil</u> <u>resistivity</u>
- reduce the occurrence of dangerous touch and step voltages by <u>physical restrictions</u> and/or <u>warning notices</u>.

3.7 Protection Against Touch & Step Voltages


- The voltage difference exists between the hand and feet.
- The hazard is considered to be reduced if:
 - The probability of persons approaching, or duration of presence is very low – limiting access to the area can be a solution
 - Natural down-conductors (building façades) are used where extensive metal framework or steel work is interconnected
 - A surface layer with ≥ 5 k ohm.m insulating barrier such as 50 mm of asphalt (bitumen) or 150 mm of gravel (batu kerikil) is used
 - The down-conductor is insulated with at least 100 kV 1.2/50 µs impulse insulation (3 mm PVC)

3.7 Protection Against Touch & Step Voltages

3.9 Site Coordination

Regular consultation between Electrical Engineers, Architects, C&S Engineers, Mechanical Engineers and Contractors is essential in order to achieve the best result

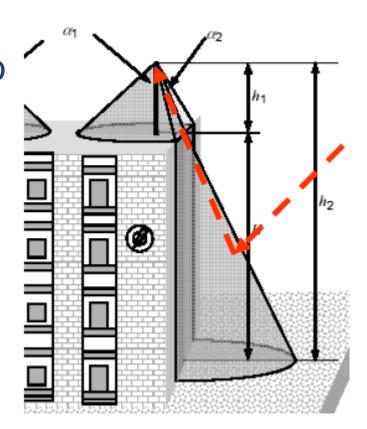
3/19/2021 90

3.9 Site Coordination

Coordination between Test Joint and Rainwater Pipe

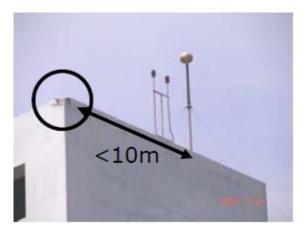
3/19/2021 91

- Most common misconceptions are:
 - "Lightning always strike the highest part of a structure"
 - "Air terminals always attract lightning"
 - Metal rebars in structures attract lightning and cause more damages to structures
 - Air terminals must be positioned away from corners and edges
 - Non-conventional air terminal technologies are new and effective


Impact:

- More engineers believed that air terminals can attract lightning
- More engineers disregard the use of lightning protection standards
- More engineers look for non-conventional air terminal technologies

Impact:


 "A stepped leader entering the cone will be attracted to the air terminal"

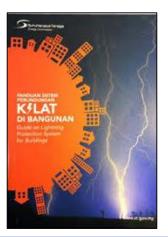
Misconception: "Air terminals must be positioned away from corners and edges"

Significant number of bypasses occurred within ESE claimed zone of protection

3.11 Non-conventional LPS

What is not lightning protection?

- Early Streamer Emission ESE
 - Radioactive
 - Pulse Voltage
 - Sparking Controlled Leader Trigger (CLT)
- Lightning Elimination
 - Dissipation Array System (DAS)
 - Charge Transfer System (CTS)
- Not allowed by
 - ST
 - NFPA
 - IEEE
 - IEC
 - US Military
 - Underwriter Laboratory (UL)



Further Reading

- "A Guide to BS EN 62305:2006, Protection Against Lightning", U.K: Thomas & Betts
- "Lightning Protection Guide", 2nd Updated Edition, Germany: Dehn and Sohne, 2007
- "Panduan Sistem Perlindungan Kilat di Bangunan": Suruhanjaya Tenaga

