

Data-driven simulation in public transport

22 February 2017 / Frederic Roulland

Xerox Research Centre Europe

The transportation planning objective

Accurate model is critical

A data driven approach for transportation planning

Flow

Scheduling,

Pricing

Micro-Simulation Approach

Macro level Simulation (late 60s):

• Use flow equations : Model network as pipes and people as gaz or liquid.

Meso level Simulation (late 90s):

- Same as macro but at certain places:
- When entering, flow are converted to people,
- When exiting, people are converted to flow.

Micro level Simulation, discrete events (00s and 10s):

• Every entity (people, vehicle and places) interact with each other and every second the status of all entities is known and updated. The entities obey rules pre-defined by operators based on experience.

Next Step: Self learning micro level simulation

• Same as micro level but the behavior and demand is automatically learned and updated from daily observations.

System Overview

Reconstruction demand and observed scheduled from fare collection data

Learning user preferences

Integration into Mobility Analytics Platform

Current Results & Challenges

Use case

Nancy (France)

Key figures

- ~ 250 K Inhabitants
- ~ 100 K Public transport tickets validations / week day
- 1032 Stops
- 2 Tramways + 36 bus routes

Data experiment

- 93196 Validations from June 3rd 2016
- 55727 qualified travels out of 60352 reconstructed passengers travels
- 2189 Reconstructed vehicle trips

Learning preferences

Objective function:

Distance based on correlation of travel times histograms

 $1 - \frac{(u - \overline{u}).(v - \overline{v})}{\|(u - \overline{u})\|_2 \|(v - \overline{v})\|_2}$

u, v are vectors capturing histograms of real travel times and simulation

score = 0.2489

Using fitted choice model

score =0.1267

11

Multi legs vs single legs

Conclusion & Next Steps

This work shows promising results of a game changing approach to transportation simulation and planning

Further validation

• Study stability of user choice model over different contexts and network configurations

Demand modeling

- Sample demand over a larger period
- Model actual origins and destinations
- Integrate estimates of demand using other modalities

© 2017 Conduent Business Services, LLC. All rights reserved. Conduent and Conduent Agile Star are trademarks of Conduent Business Services, LLC in the United States and/or other countries.