

EVALUATION OF ROCK OVERSTRESSING IN A DEEP UNDERGROUND EXCAVATION OF PAHANG-SELANGOR RAW WATER TRANSFER TUNNEL

15th SEPTEMBER 2020

Presenter: ROMZIAH AZIT WATER SUPPLY DIVISION MINISTRY OF ENVIRONMENT AND WATER

CONTENTS

1.0 INTRODUCTION

2.0 PROBLEM STATEMENT

3.0 LITERATURE REVIEW

4.0 OBJECTIVES

5.0 METHODOLOGY

► 6.0 RESULTS AND DISCUSSIONS

1.0 INTRODUCTION

BACKGROUND OF STUDY AREA

- The objective of the Pahang-Selangor Raw Water Transfer Project was to transfer 1890 MLD of raw water from Pahang to Selangor.
- The tunnel traverses under the Titiwangsa Main Range located on the border between Pahang and Selangor States.

PAHANG-SELANGOR RAW WATER TUNNEL EXCAVATION

Project Background : Water Transfer Tunnel

1.0 INTRODUCTION

- Time and cost impact for removing rock and backfilling
- Payable under Contract
- Contractor may claim Extension of Time to complete works and costs for physical conditions not foreseeable at time of tender

STRESS-INDUCED PROBLEMS DURING TUNNELING

1.0 INTRODUCTION

- The stability problem because of high overburden stress.
 - The addition of induced stress at greater increase the problem related to stress concentrations.
 - The distribution of stress leads to stress concentration around the underground opening may cause rock overstressing.

2.0 PROBLEM STATEMENTS

1) Underground excavation at great depth may cause stress induced failure such as rock burst and spalling due to rock overstressing.

4) **Numerical modeling** is a potential tool to evaluate stability and to assist in selection of proper input properties regarding the rock mass.

3) Research on stress induced failure in the deep underground excavation is important **in order to understand the stress state and mechanical behavior of rock masses.** 5) The successful methods in modelling the failure zones around the excavation boundary **has been identified by many researchers** in predicting the stress induced failure.

2) The greatest challenges in deep underground excavation is the in-situ stresses are often not well defined due to **inadequate amount of measured stresses information**.

6) Each method has an assumption behind the parameters assigned to the model which is required **extensive calibration using observed failure zones**.

4) Validation of estimated stresses by **in-situ stress measurement is the most required** factor for any deep underground excavation 8) Understanding **the differences between available material models** may be helpful for the advancement of the science and engineering in underground excavation at great depth.

5

3.0 LITERATURE REVIEW

Author/yr.	Issues/Gap
(Brox, 2013)	The importance to have an appropriate amount of rock strength & in-situ stress data prior to construction from along the tunnel alignment in order to perform a comprehensive evaluation of overstressing.
(Panthi, 2012)	More cases of tunnel damage should be studied to verify the applicability of the proposed equations and to establish the approximate range of the horizontal tectonic stress .
(Hoek, 2010)	Rapid evolution of computer software offers the potential for the calibration or possible elimination of some of the empirical techniques upon which tunnel designers.
(Panthi, 2012)	More data records representing different rock formations and locations should be collected and used to verify and improve the validity of the proposed equations.

6

4.0 OBJECTIVES

 To investigate the overstressing potential based on rock mechanical properties and in-situ stress estimation using stress distribution analysis;

- To determine the stress magnitudes and directions based on in-situ stress measurement at selected locations for overstressing classification;
- To evaluate the Main Range Granite rock mass strength parameters applied in modified CSFH model for spalling failure prediction based on Hoek-Brown failure criterion; and
- To validate the rock mass strength input parameters and spalling prediction output of the overstressed rock mass to **the real stress induced failures** cases.

Objective No. 1: Rock Overstressing Potential -Preliminary Data Collection

C

Objective No. 1: Field Investigation Data Collection

Objective No. 1: Field Investigation – Geological Condition

Batu Cave

3" 15

luala Lumpur imestone

UALA LUMPLIF

Klang Gales Quartz Ridge

15

Lepoh F

set

Tekali Quartz Ridge

The tunnel section composed of Main Range Granite consist of:

- Bukit tinggi granite (coarse-grained)
- Genting Sempah granite (fine grained)
- Kuala Lumpur granite

Objective No. 1: Field Investigation Data Collection

The rock physical and mechanical for deep underground excavations before construction is estimated from boreholes from site investigation (SI).

Objective No. 1: Stress Distribution Analysis

$$\sigma_{\theta} = \frac{P_1 + P_2}{2} \left(1 + \frac{a^2}{r^2} \right) - \frac{P_1 - P_2}{2} \left[1 + \frac{3a^4}{r^4} \right] \cos 2\theta$$

$$\tau_{r\theta} = \frac{P_1 - P_2}{\hat{r}^2} \left(1 + \frac{2a^2}{r^2} - \frac{3a^4}{r^4}\right) \sin 2\theta$$

 Stress state around circular tunnel is calculated from theory of elasticity as follows:

• Compressional stress σ_A at A point is

 $\sigma_{\rm A}$ = 3 $\sigma_{\rm max}$ - $\sigma_{\rm min}$

Objective No. 2: In-situ stress measurement

Test (Location)	1 (Adit 2)	2 (TBM 2)	3 (Adit 3)
Measurement method	CCBO/hydraulic fracturing	ССВО	CCBO/hydraulic fracturing
Number of times	3/3	3	3/3
OPE			

0

Objective No. 2: Selection of measurement method

Objective No.3: Material Model Intact Hoel Rock

CIVILCORE

Objective No. 3: Rock Mass Strength Estimation

w.	Materials				
- Material 1				Mater	ial 1
		201.934	60-	Hoek Brown G	lassification
Dr 🐨 Name of selected ma	Serial: Material 1	185.106	54	intact uniaxial compressive strength	141 MPa
A. V		166.278		GSI	80
v Fail	ure Envelope	- 151.45	48-	mi	32
oek Brown Classification		M IN COL	42	disturbance factor	0
sigd	141.00 C MPa C32	. 134.023	(e)	intact modulus	54450 MPa
GSI	80 0 00	117.795	ž 36	Hoek Brown	Criterion
		ŝ		mb	15.665
mi	32.00 🐑 🖾 🕯	9 100.967 -	2 10	\$	0.108
D	0 0 000	÷ 1	S - S	a	0.501
	54450.00 C NPa	.E 84.1391 -		Failure Envel	ope Range
	Land the second se	<u>م</u>	4 24 -	application	turnels
() MR	386.17 😧 🔣	67.3113	. /	sig3max	15.051 MPa
		5	18-	unit weight	0.027 MN/H3
ure Envelope Range	-	50.4835	1	tunnel depth	1130 m
		Constant of the second s	12-	Monr Cou	lomb Ht
sication: Tunnels	¥	33.0557	1/	cohesion	9.189 MPa
sicilmax	15.05 C MPa	16 000	6-/	Book Mass I	paramatan
10000000000	a ser hau a	10.000		tensile strength	arameters
Unit Weight	0.0207 (MP4/m3	** o	4	unitestal	4E 1EE MDs
Tunnel Depth	1130 m	- 6	6 6 12 18 24 30 36	compressive	
Chart I	Display Settings	Minor Principal Stress (MPa)	Normal Stress (MPa)	global strength	81.459 MPa
General: Show project tide:	no 0		 Material 1 - Principal Stress Envelope Material 1 - Shear vs. Normal Stress Envelope 	modulus of deformation	47934.939 MP

RocLab software's user interface

Objective No. 3: Empirical and Numerical Spalling Depth Prediction

Empirical spalling depth modified by Martin et al. (1999)

FEM discretization of circle domain into triangular elements by RS2 9.0 (RocScience Software) elasto-plastic finite element stress analysis program, pg. 87, 73 of

Objective No.4: Evaluation of Rock Overstressing of Pahang-Selangor Tunnel

Objective No. 4: Evaluation of Rock Overstressing of Pahang-Selangor Tunnel

Spalling simulation for real case of spalling failure at Pahang-Selangor tunnel

Objective No. 1: Stresses distribution with variations of Coefficient of Lateral Stress (Ko).

/	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6					0
0 0		Australia Igneous Rocks	Overburden	Tang	ential S	tress (l	MPa)
500		Australia Metamorphosed Rocks Australia Sedimentary Rocks Canada Igneous Rocks	(m)	$K_{o} =$	K _o =	K _o =	K _o =
1000		 Canada Metamorphosed Rocks Canada Sedimentary Rocks USA Igneous Rocks 	500	0.5 34	32	29	25
(II)		USA Metamorphosed Rocks USA Sedimentary Rocks	600	41	38	35	31
u-1500		 Scandinabia Igneous Rocks Scandinabia Metamorphosed Rocks Scandinabia Pre-Cambrian Rocks South Africa Igneous Rocks 	700	48	45	41	36
/erbu			800	55	51	47	41
0/tJ 2000		South Africa Metamorphosed Rocks South Africa Sodimentery Peels	900	62	57	53	46
Dep		South Africa Sedimentary Rocks Mont-Blanc Gneiss-Granite	1000	69	64	59	51
2500		South India Granite gneiss N.Wales UK Slate	1100	76	70	64	56
		 Reykjavik basalt breccia Cameron Highland Granite 	1130	78	72	66	58
3000	E. T. Brown & E. Hoek (1978)	k=1550/z+0.5 k=100/z+0.3	1200	85	80	75	63

Average lateral stress ratio and overburden by Hoek and Brown (1978).

Tangential stress around circular tunnel by coefficients of lateral stress.

Result of Overcoring (CCBO)

Comparison of test Results to Regional Stress Map

2

Objective No. 2: Rock Overstressing Classification (Hoek and Marinos 2009)

Objective No.3: Intact Rock Strength Parameters - Rock Mass Strength Parameters

Sample no.	Density ρ (g/cm³)	Uniaxial Compressive Strength UCS(MPa)	Young's Modulus E(MPa)	Poisson's Ratio v
1	2.66	149	56000	0.22
2	2.64	108	49800	0.20
3	2.67	166	61000	0.22
4	2.65	152	50100	0.17
5	2.68	145	61900	0.25
6	2.67	128	48600	0.13
Average	2.67	141	54000	0.20

3

Material Model of the Main Range Granite for Spalling Prediction

Parametric Study – Peak and Residual Cohesion for the CSFH model

Modified CSFH Material Model for Spalling Prediction

Objetive No. 4: Evaluation of Overstressing Potential and Spalling Failures

2

Over Stress Characterisation - Boundary Stress/UCS Vs Chainage

Evaluation of Overstressing Potential and Spalling Failures

3

Empirical model
 Numerical model
 Observed

Case	UCS	RM	Jcon		Hoek-Brown Criterion		
S	(MPa)	R	89	GSI	m _b	S	а
1	94	75	20	70	2.865	0.021	0.502
2	141	82	23	77	3.305	0.032	0.501
3	114	88	23	83	3.245	0.035	0.501
4	124	89	19	84	4.137	0.011	0.503
5	124	79	16	74	2.153	0.008	0.504
6	94	75	16	70	1.866	0.005	0.505
7	118	75	16	70	1.934	0.006	0.504
8	149	81	16	76	2.574	0.015	0.502

Evaluation of Overstressing Potential and Spalling Failures

CORE

3

7.0 CONCLUSIONS

The vertical stress dominates in deeper part of the Main Range in Malaysia, the coefficient of lateral stress (K_o) is estimated to be less than one (K_o < 1).

□ From the measurement of in situ stress at the critical section of Pahang-Selangor Tunnel, the K_o value was found to be 0.38, this has been validated that the vertical stress dominant of in-situ stress in Peninsular Malaysia.

The parametric analysis had identified that the peak friction angle of 10° and residual cohesion is equal to rock mass cohesion, which are suitable for determining the size of spalling depth.

The validation of numerical analysis had shown that the modified CSFH is suitable for spalling failure prediction with respect to location, depth and shape.

LIST OF PUBLICATIONS (Journals)

Azit, R., Ismail, M. A. M., Thang, Y.J., (2017). Evaluation of Spalling Fallout on Excavation Disturbed Zone under Deep Hard Rock Tunnel. IOP Conference Series: Materials Science and Engineering. Vol. 226. (Scopus).

Azit, R., Ismail, M. A. M., (2016). In-situ Stress Measurement by Overcoring and Hydraulic Fracturing of Pahang-Selangor Raw Water Transfer Project. Jurnal Teknologi. Vol 78, no. 8-6. (Scopus)

Azit, R., Ismail, M. A. M., Zainal, S.F.F.S., and Mahmood, N. (2015). Rock Overstressing in Deep Tunnel Excavation of Pahang-Selangor Raw Water Transfer Project, Journal of Applied Mechanics and Materials, Vol. 802, pp. 16-21.

Azit, R., Ismail, M. A. M., (2016). Analysis of rock burst event in deep TBM excavation of Pahang-Selangor raw water transfer tunnel. The Malaysian Construction Research Journal. Vol 20 pp. 1-13. (Scopus).

LIST OF PUBLICATIONS (Conference proceedings)

Azit, R. and Ismail, M.A.M. 2016 Modeling Stress-Induced Failure for the Deep Tunnel Excavation of Pahang-Selangor Raw Water Transfer Project ISRM International Symposium- 9th Asian Rock Mechanics Symposium, 18-22 October 2016, Bali, Indonesia

Ismail, M.A.M., **Azit, R**., Mahmood, N., and Narita, N. 2014. Evaluation of Rock Overstressing in the Excavation of Pahang-Selangor Raw Water transfer Tunnel Project, 2014 ISRM International Symposium- 8th Asian Rock Mechanics Symposium, 14-16 October 2014, Sapporo, Japan International Society of Rock Mechanics Publishing (Published)

Ismail, M.A.M., and **Azit, R**. 2013. Rock Mass Classification System Used for Pahang-Selangor Raw Water Transfer Tunnel, 2013 Proceedings of the International Civil and Infrastructure Engineering Conference 2013, Kuching Sarawak, Malaysia Springer International Publishing (Published)

