

UTTM UNITED TROCCO RALATER

EN	1991
----	------

EUROCODE 1 : ACTIO	ONS ON STRUCTURES
EN 1991-1-1	Densities, self weight and imposed loads
EN 1991-1-2	Actions on structures exposed to fire
EN 1991-1-3	Snow loads
EN 1991-1-4	Wind loads
EN 1991-1-5	Thermal loads
EN 1991-1-6	Actions during execution
EN 1991-1-7	Accidental actions
EN 1991-2	Traffic loads on bridges
EN 1991-3	Actions induced by cranes and machinery
EN 1991-4	Silos and tanks

innovative • entrepreneurial • global

			EN 1991-1-1
		Contents	
W	MALAYSIAN MS EN 1991-1-1:2010 STANDARD	Section 1	General
Т		Section 2	Classification of actions
		Section 3	Design situations
	EUROCODE 1: ACTIONS ON STRUCTURES - PART 1-1: GENERAL ACTIONS - DENSITIES, SELF-WEIGHT, IMPOSED LOADS FOR BUILDINGS	Section 4	Densities of construction and stored materials
		Section 5	Self-weight of construction works
		Section 6	Imposed load on buildings
	ICS: 91/9/03/0 Designa scredu etta di dista safagiti reportanti POR SALE WITHIN HALATSA CALY	Annex A	Tables for nominal density of construction materials, and nominal density and angle o repose of stored materials
	© Copyright 2010 DEPARTMENT OF STANDARDS MALAYSIA	Annex B	Vehicle barriers and parapets for car parks

Density of Table A.1 - Construction materials-	construction materi
Materials	Density γ [kN/m ³]
concrete (see EN 206)	
lightweight	
density class LC 1,0	9,0 to 10,0 ¹⁾²⁾
density class LC 1,2	10,0 to 12,0 1)2)
density class LC 1,4	12,0 to 14,0 ¹⁾²⁾
density class LC 1,6	14,0 to 16,0 ¹⁾²⁾
density class LC 1,8	$16.0 \text{ to } 18.0^{-1(2)}$
density class LC 2,0	18,0 to 20,0 ¹⁾²⁾
normal weight	24,01)2)
heavy weight	>1)2)
mortar	
cement mortar	19,0 to 23,0
gypsum mortar	12,0 to 18,0
lime-cement mortar	18,0 to 20,0
lime mortar	12,0 to 18,0
¹⁾ Increase by 1 kN/m ³ for normal percentage of rein ²⁾ Increase by 1 kN/m ³ for unhardened concrete	forcing and pre-stressing steel

Density c	of construction materi
Table A.4 - Construction mat	erials-metals
Materials	Density
	$\frac{\gamma}{[kN/m^3]}$
netals	
luminium	27,0
brass	83,0 to 85,0
pronze	83,0 to 85,0
copper	87,0 to 89,0
ron, cast	71,0 to 72,5
ron, wrought	76,0
ead	112,0 to 114,0
iteel	77,0 to 78,5
tine	71,0 to 72,0

Density of stored materials

Table A.7 - Stored materials - building and construction

Materials	Density Y	Angle of repose	
	[kN/m ³]	\$\$ [``]	
aggregates (see prEN 206)			
lightweight	9,0 to 20,0 ¹⁾	30	
normal	20,0 to 30,0	30	
heavyweight	> 30,0	30	
gravel and sand, bulked	15,0 to 20,0	35	
sand	14,0 to 19,0	30	
blast furnace slag			
lumps	17,0	40	
granules	12,0	30	
crushed foamed	9,0	35	
brick sand, crushed brick, broken bricks	15,0	35	
vermiculite			
exfoliated, aggregate for concrete	1,0	-	
crude	6,0 to 9,0	-	

		ed load
Table 6.2 - Imposed loads on t Categories of loaded areas	floors, balconies and stairs in $ \begin{array}{c} q_k \\ [kN/m^2] \end{array} $	
Category A	L	
- Floors	1,5 to <u>2.0</u>	2.0 to 3,0
- Stairs	<u>2,0 to</u> 4,0	2.0 to 4,0
- Balconies	<u>2,5 to</u> 4,0	2.0 to 3,0
Category B	2,0 to <u>3,0</u>	1,5 to <u>4,5</u>
Category C		
- C1	2,0 to 3,0	3,0 to 4,0
- C2	3,0 to 4,0	2,5 to 7,0 (4,0)
- C3	3,0 to <u>5,0</u>	4,0 to 7,0
- C4	4,5 to 5,0	3,5 to 7,0
- C5	<u>5,0</u> to 7,5	3,5 to 4,5
category D		
- D1	4,0 to 5,0	3,5 to 7,0 (4,0
- D2	4,0 to 5,0	3,5 to 7,0

UNIVERSITI TEKNOLOGI WALAYSIA			
Table	NA3. Imp	osed loads on floors, balconies and stairs	in buildings
0.1		-	
Category of I	oaded area	(kN/m ²)	Q⊾ (kN)
Category A	A1	1.5	2.0
	A2	1.5	2.0
	A3	2.0	2.0
	A4	2.0	2.7
	A5	2.5	2.0
	A6	Same as the rooms to which they give access	2.0 (concentrated
		but with a minimum of 3.0	at the outer edge)
	A7	Same as the rooms to which they give access	2.0 (concentrated
		but with a minimum of 4.0	at the outer edge)
Category B	B1	2.5	2.7
	B2	3.0	2.7
Category C	C11	2.0	3.0
	C12	2.5	4.0
	C13	3.0	3.0
	C21	4.0	3.6
	C22	3.0	2.7

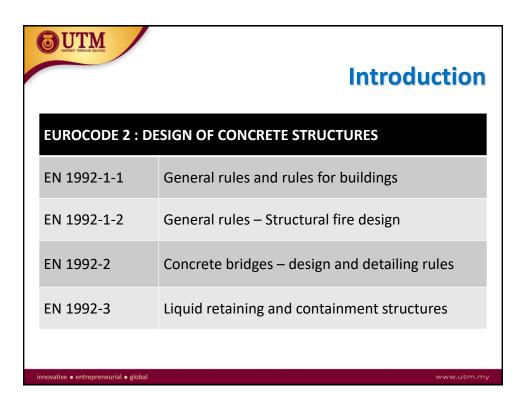
Cat	tegory of loaded area
А	A1: All usages within self-contained dwelling units
Area for domestic and residential activities	A2: Bedrooms and dormitories
	A3 : Bedrooms in hotels, hospital
В	B1: General use
Office area	B2: At or below ground floor level
	C11: Areas with tables – dining rooms
C Areas where people may congregate	C13: Areas with tables -Classrooms
ricus where people may congregate	C22: Area with fixed seat – Assembly areas
D Shopping areas	D1: Areas in general retail shops

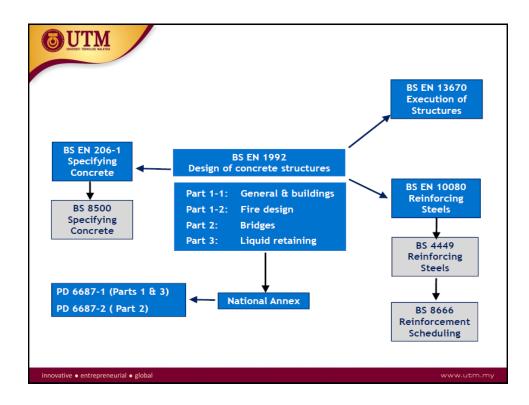
Table NA:	2. Categories for re	sidential, socia	I, commercial and administration areas including additional sub-categories for Malay:
Category of oaded area	Specific use	Sub-category	Examples
A	Areas for domestic and residential activities	A1	All usages within self-contained dwelling units (a unit occupied by a single family or a modular student accommodation unit with a secure door and comprising not more than six single bedrooms and an internal corridor)
			Communal areas (including kitchens) in blocks of flats with limited use (see Note 1). For communal areas in other blocks of flats, see sub-categories A5, A6 and C3
		A2	Bedrooms and dormitories except those in self-contained single family dwelling units and in hotels and motels
		A3	Bedrooms in hotels and motels; hospital wards; toilet areas
		A4	Billiard/snooker rooms
		A5	Balconies in single family dwelling units and communal areas in blocks of flats with limited use (see Note 1)
		A6	Balconies in hostels, guest houses, residential clubs and communal areas in blocks of flats except those covered by Note 1
		A7	Balconies in hotels and motels
В	Office areas	B1	General use other than in B2
		B2	At or below ground floor level
С	Areas where	C1	Areas with tables
	people may	C11	Public, institutional and communal dining rooms and lounges, cafes and restaurants (see Note 2)
	congregate (with	C12	Panding mame with no book storage

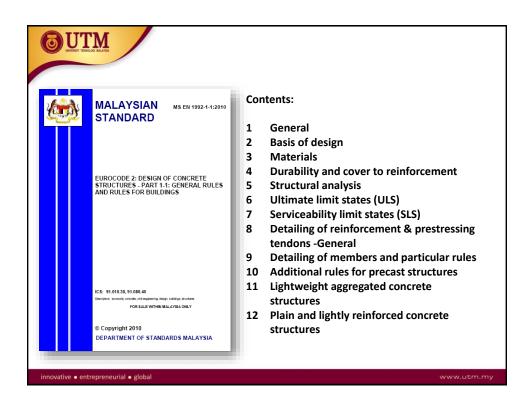
Load values with various intensities of people loading Imposed load

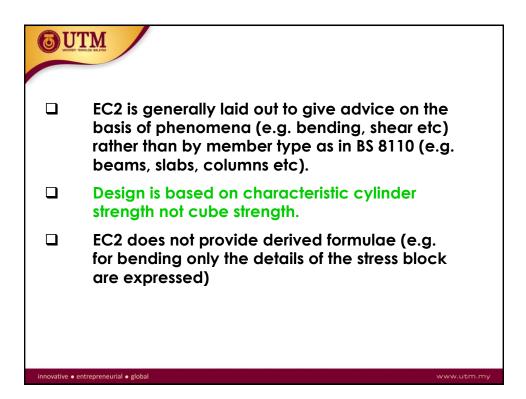
1.5 kN/m² : 8 persons in a space 4m²

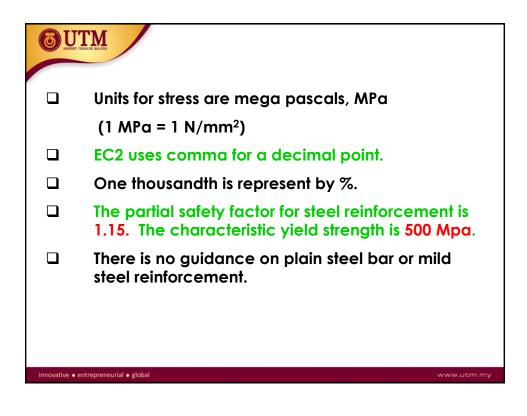

innovative • entrepreneurial • global

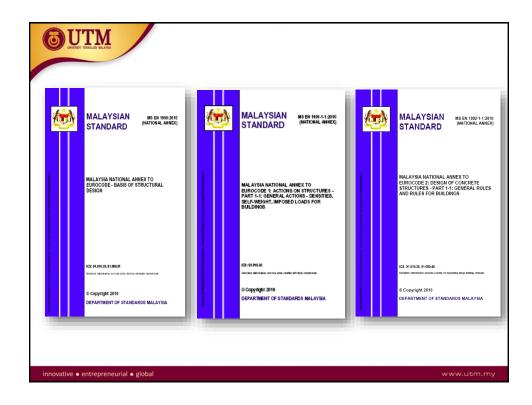

3.0 kN/m² : 17 persons in a space $4m^2$


4.0 kN/m² : 22 persons in a space $4m^2$

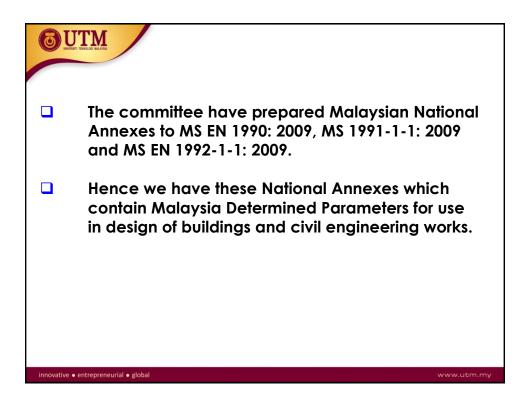

innovative • entrepreneurial • global

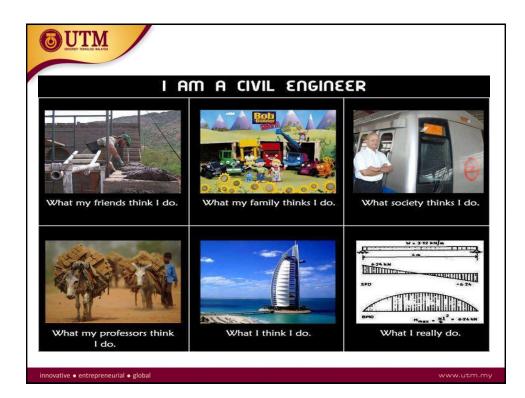


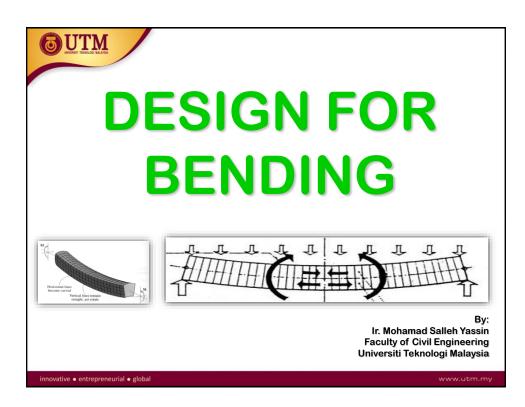


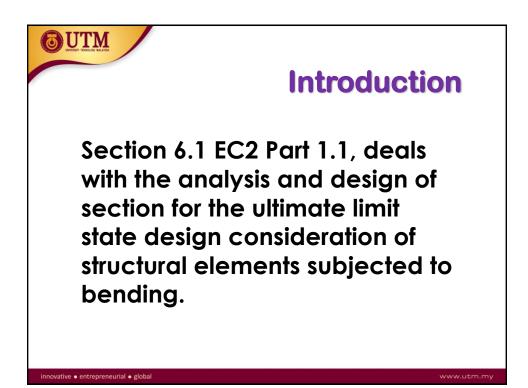


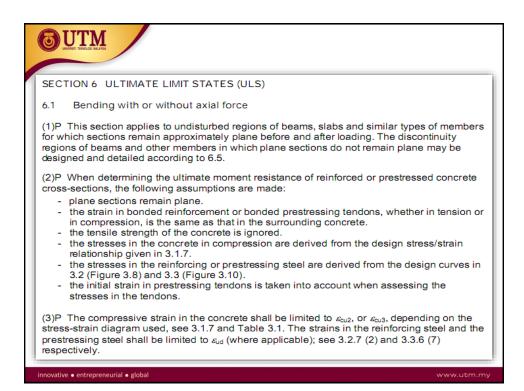
-	
6.	Ultimate limit states (ULS)
6.1	Bending with or without axial force
6.2	Shear
	6.2.1 General verification procedure
	6.2.2 Members not requiring design shear reinforcement
	6.2.3 Members requiring design shear reinforcement
	6.2.4 Shear between web and flanges of T-sections
	6.2.5 Shear at the interface between concretes cast at different times
6.3	
	6.3.1 General
	6.3.2 Design procedure
	6.3.3 Warping torsion
6.4	
	6.4.1 General
	6.4.2 Load distribution and basic control perimeter
	6.4.3 Punching shear calculation
	6.4.4 Punching shear resistance of slabs and column bases without shear reinforcement
	6.4.5 Punching shear resistance of slabs and column bases with shear reinforcement
6.5	Design with strut and tie models 6.5.1. General
	6.5.2 Struts
	6.5.2 Struts 6.5.3 Ties
	6.5.4 Nodes
8.8	Anchorages and laps
6.7	
6.8	
0.0	raugue

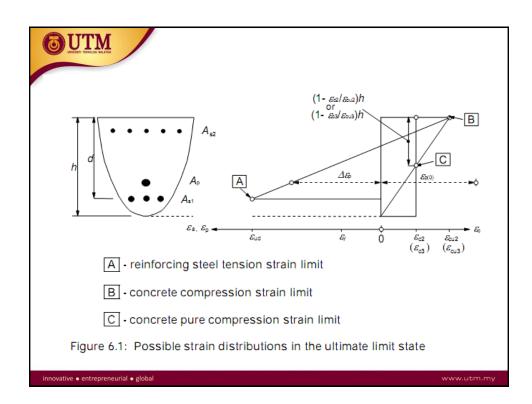

ble 1.4: Concre	te strength classes	and modulus of ela	sticity
Concrete	Characteristic	Characteristic	Modulus of
strength class	cylinder strength	cube strength	elasticity $E_{\rm cm}$
	$f_{\rm ck}$ (N/mm ²)	$f_{\rm ck,cube}$ (N/mm ²)	(kN/mm^2)
C20/25	20	25	30
C25/30	25	30	31
C30/37	30	37	33
C35/45	35	45	34
C40/50	40	50	35
C45/55	45	55	36
C50/55	50	60	37
C55/67	55	67	38
C60/75	60	75	39

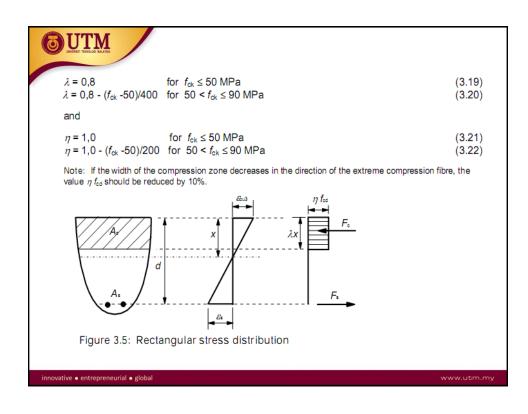


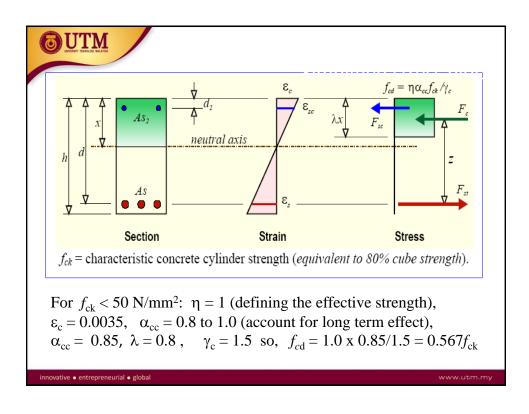

Action	ψ_0	ψ_1	ψ_2
Imposed loads in buildings (see EN 1991-1-1)			
Category A: domestic, residential areas	0.7	0.5	0.3
Category B: office areas	0.7	0.5	0.3
Category C: congregation areas	0.7	0.7	0.6
Category D: shopping areas	0.7	0.7	0.6
Category E: storage areas	1.0	0.9	0.8
Category F: traffic area, vehicle weight < 30 kN	0.7	0.7	0.6
Category G: traffic area, 30 kN < vehicle weight < 200 kN	0.7	0.5	0.3
Category H: roof (see EN 1991-1-1: Cl. 3.3.2)	0.7	0	0
Wind loads on buildings (see MS 1553: 2002)	0.5	0.7	0.7
Temperature (non-fire) in buildings (see EN 1991-1-5)	0.6	0.7	0.7

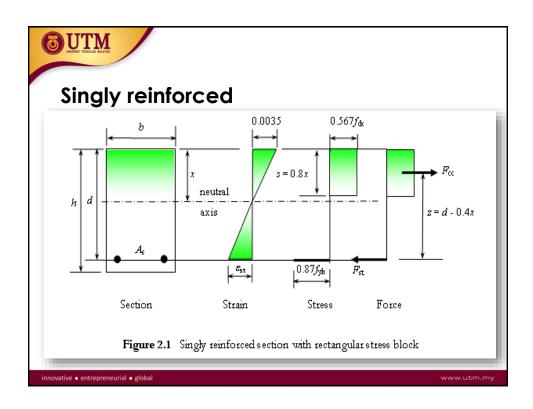

Design working life category	Indicative design working life (years)	Examples
1	10	Temporary structures ^a
2	10 to 30	Replaceable structural parts, e.g. gantry girders, bearings
3	15 to 25	Agricultural and similar structures
4	50	Building structures and other common structures, not listed elsewhere in this table
5	120	Monumental building structures, highway and railway bridges, and other civil engineering structures
Structures or parts of str s temporary.	ructures that can be dismant	tled with a view of being re-used should not be considered

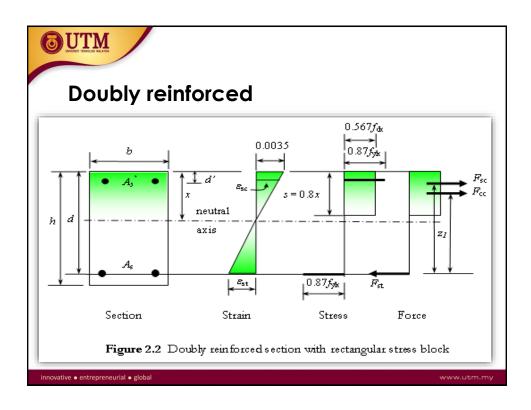

Design working life category	Indicative design working life (years)	Examples
1	10	Temporary structures (1)
2	10 to 25	Replaceable structural parts, e.g. gantry girders, bearings
3	15 to 30	Agricultural and similar structures
4	50	Building structures and other common structures
5	100	Monumental building structures, bridges, and other civil engineering structures
 Structures or pa not be considered a 		an be dismantled with a view to being re-used should

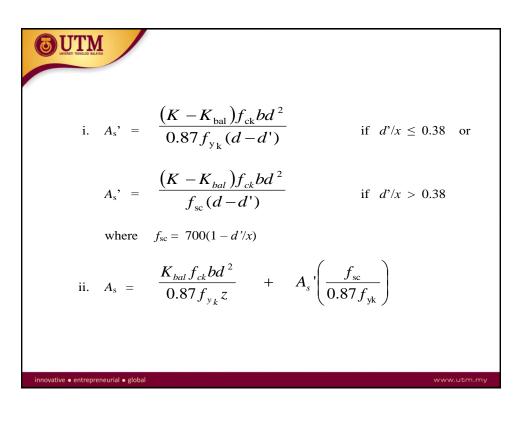

Tabl	Table NA1. Malaysia decisions for Nationally Determined Parameters described in MS EN 1992-1-1:2010		escribed in MS EN 1992-1-1:2010
Subclauses	Nationally Determined Parameter	Eurocode recommendation	Malaysia decision
2.3.3 (3)	Value of d _{joint}	30 m	Use the recommended value.
2.4.2.1 (1)	Partial factor for shrinkage action y _{str}	1.0	Use the recommended value.
2.4.2.2 (1)	Partial factor for prestress y _{P-dar}	1.0	0.9
2.4.2.2 (2)	Partial factor for prestress y _{Pradev}	1.3	1.1
2.4.2.2 (3)	Partial factor for prestress y _{P-milev} for local effects	1.2	Use the recommended value.
2.4.2.3 (1)	Partial factor for fatigue loads /p.m	1.0	Use the recommended value.
2.4.2.4 (1)	Partial factors for materials for ultimate limit states γ_c and γ_s		Use the recommended values.
2.4.2.4 (2)	serviceability limit states $\gamma_{\rm C}$ and $\gamma_{\rm S}$	1.0	Use the recommended value.
2.4.2.5 (2)	Value of k _r	1.1	Use the recommended value.
3.1.2 (2)P	Value of C _{max}	C90/105	Use the recommended value. However, the shear stree of concrete classes higher than C50/80 should determined by tests, unless there is evidence satisfactory past performance of the particular including the type of aggregates used. Alternatively, sl strength of concrete strength classes higher than C50 may be limited to that of C50/80.
3.1.2 (4)	Value of k	0.85	1.0
3.1.6 (1)P	Value of α_{ee}	1.0	0.85 for compression in flexure and axial loading and for other phenomena. However, a _{cc} may be ta conservatively as 0.85 for all phenomena.

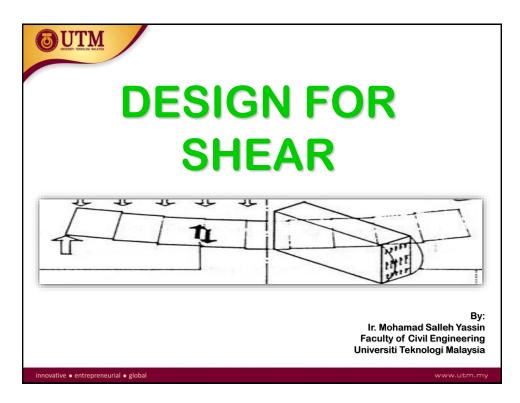


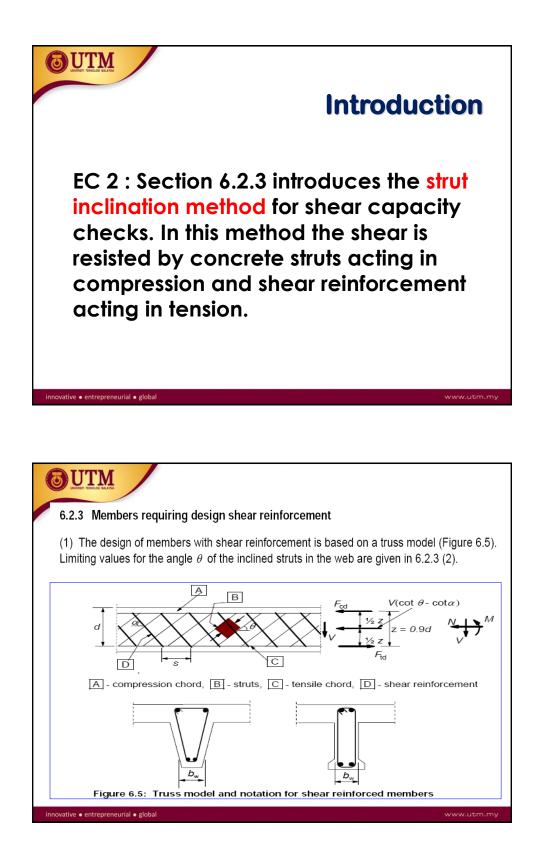


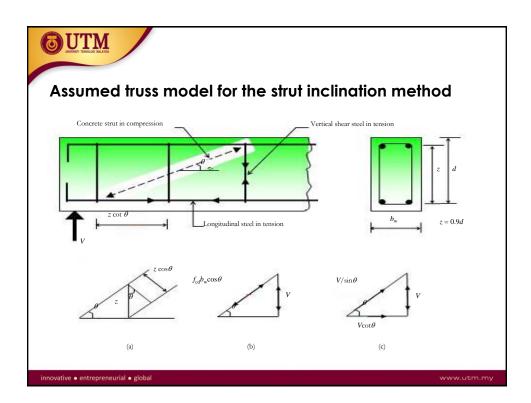




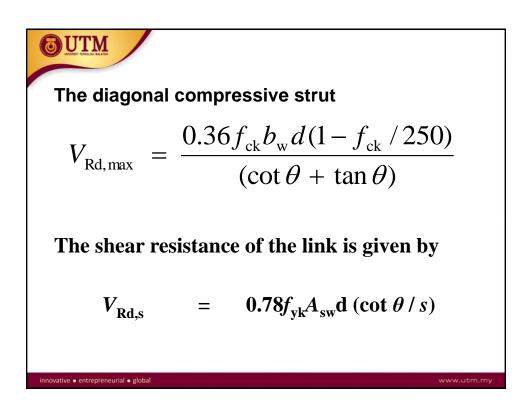

2.2.6 Design Procedure for Rectangular Section

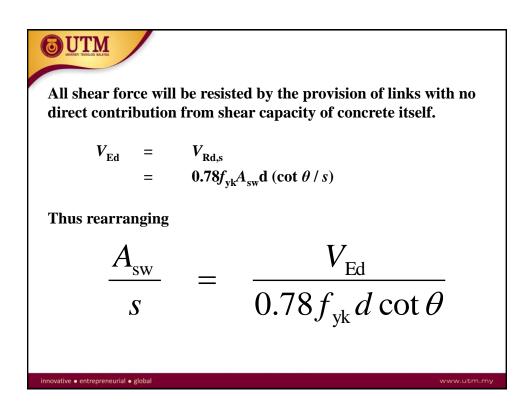

UTTM

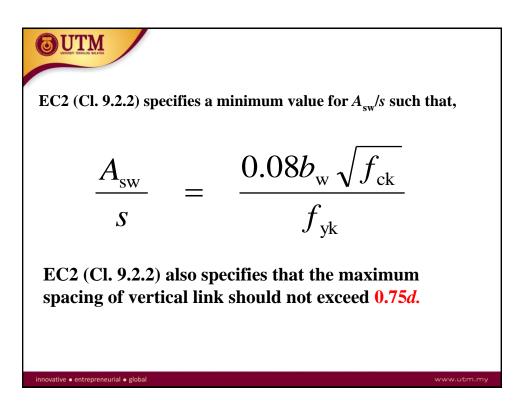

Supposed the design bending moment is M, beam section is $b \ge d$, concrete strength is f_{ck} and steel strength is f_{yk} , to determine the area of reinforcement, proceed as follows.

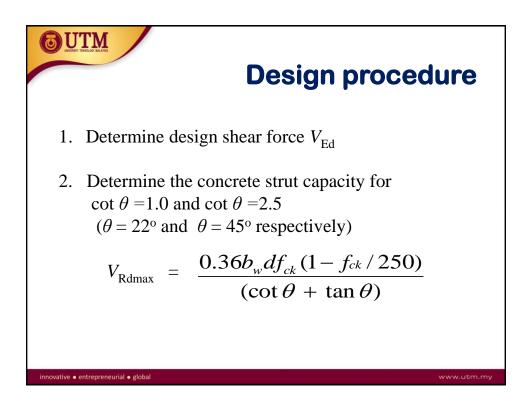

1. Calculate
$$K = \frac{M}{bd^2 f_{ck}}$$

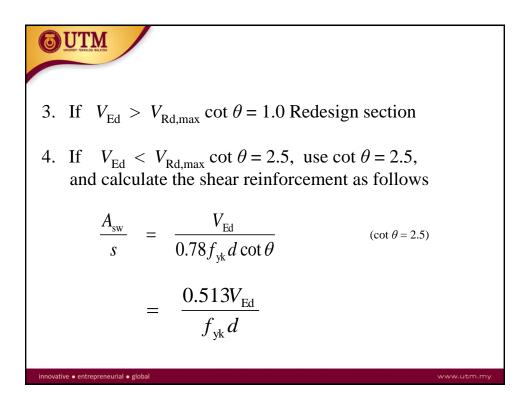
2. Calculate $K_{bal} = 0.363(\delta - 0.44) - 0.116(\delta - 0.44)^2$
where $\delta = \frac{\text{momen at section after redistribution}}{\text{momen at section before redistribution}} \le 1.0$

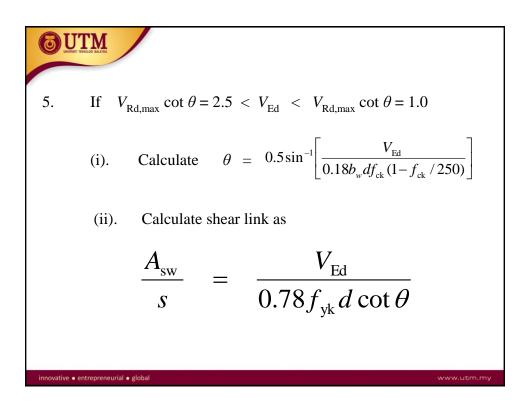

EVEXENTIAL 1. If $K \le K_{bal}$, compression reinforcement is not required, and $i. \ z = d\left[0.5 + \sqrt{(0.25 - K/1.134)}\right]$ $ii. \ A_s = \frac{M}{0.87 f_{yk} z}$ 2. If $K > K_{bal}$, compression reinforcement is required, and $i. \ z = d\left[0.5 + \sqrt{(0.25 - K_{bal}/1.134)}\right]$ $ii. \ x = (d-z)/0.4$ $iii. \ Check \ d'/x$

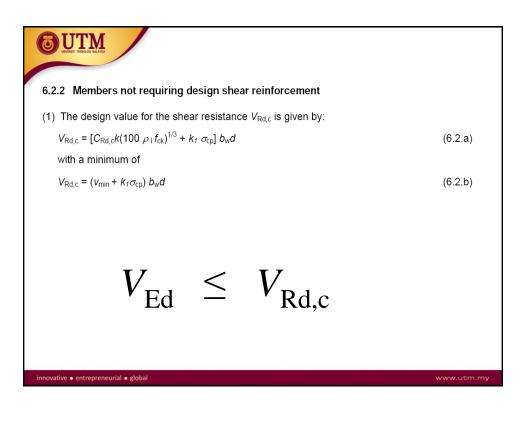


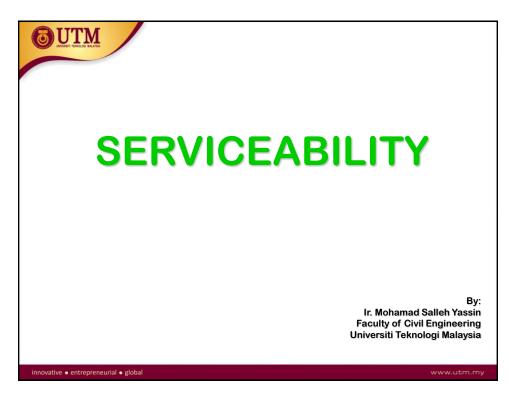


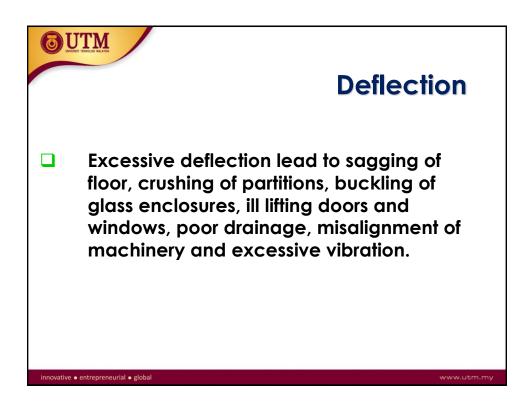




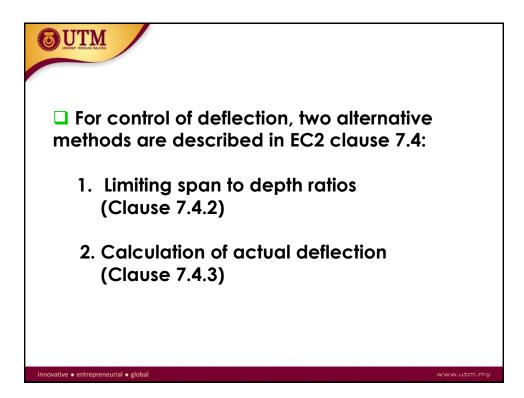


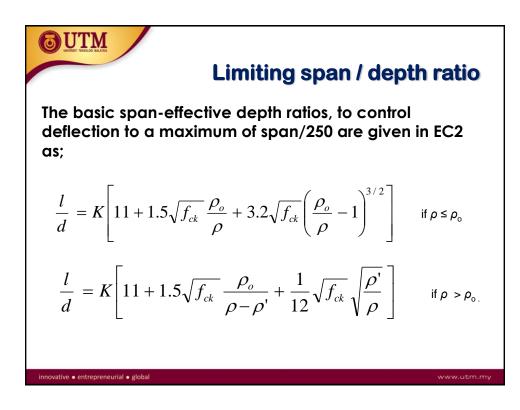


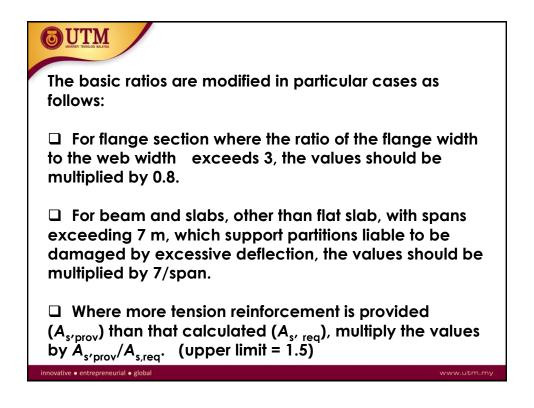


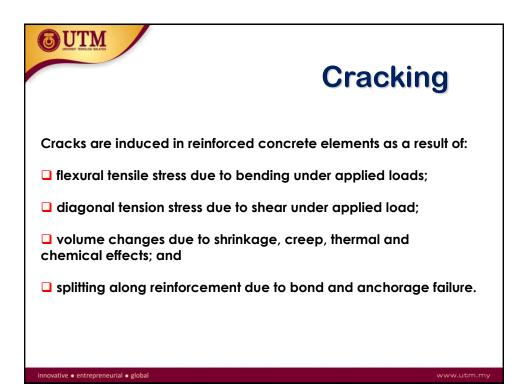


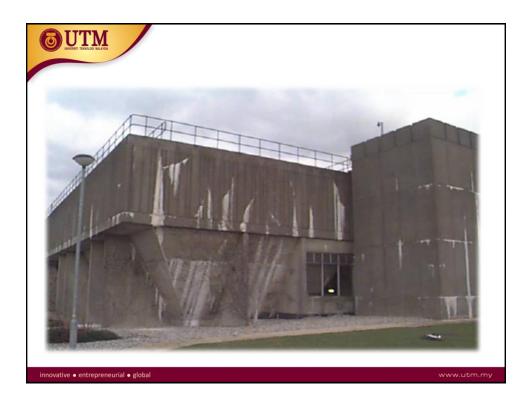
<text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

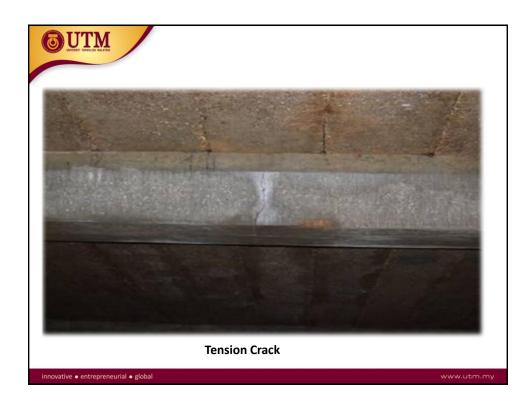




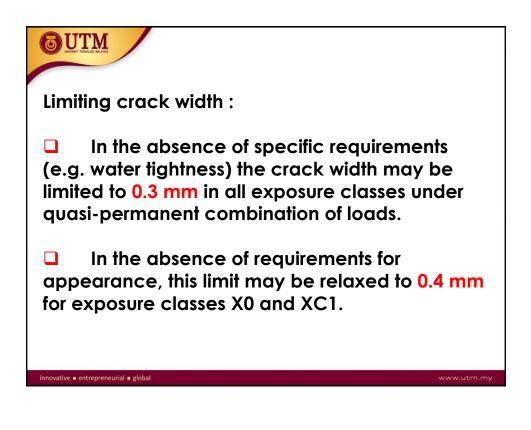


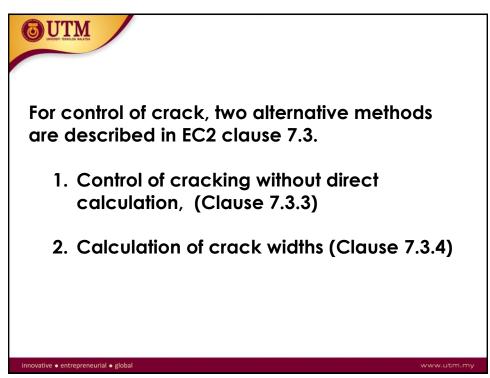


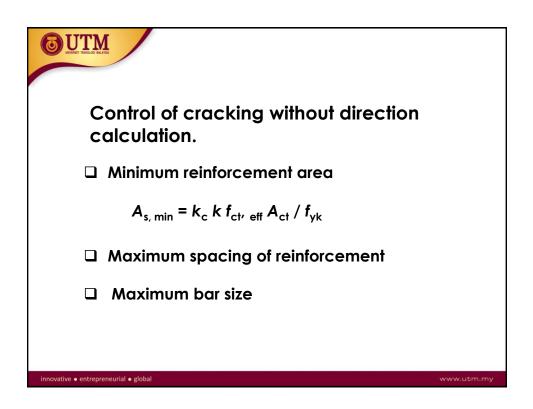


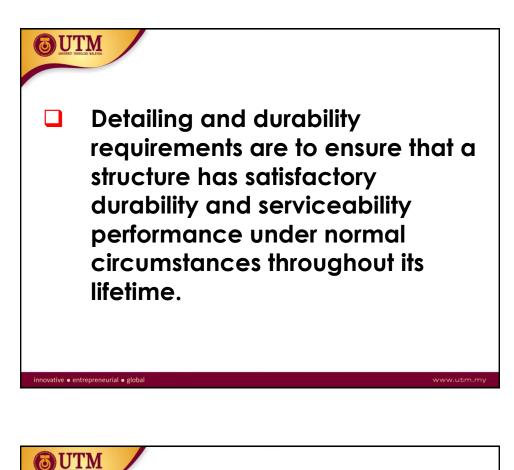


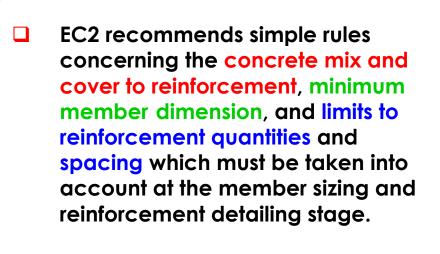
C	Table 4.1: Basic span/effective depth	ratio (f . =	= 500 N/mm² C30)/35 Concrete)
		УК	Basic span-effective depth ratio	
	Structural System	K	Concrete highly stressed, $\rho =$ 1.5%	Concrete lightly stressed, $\rho = 0.5\%$
1.	Simply supported beam, one/two way simply supported slab	1.0	14	20
2.	End span of continuous beam or one- way continuous slab or two way spanning slab continuous over one long side	1.3	18	26
3.	Interior span of beam or one way or two way spanning slab	1.5	20	30
4.	Slab supported on columns without beam (flat slab) based on longer span	1.2	17	24
5.	Cantilever	0.4	6	8

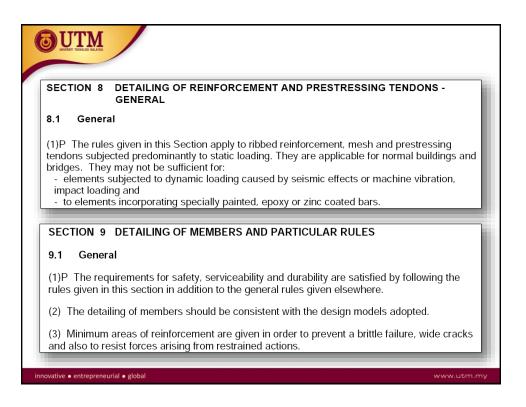


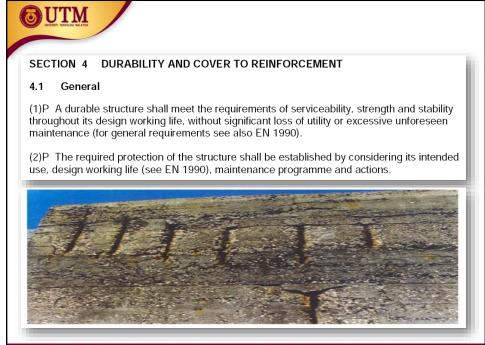


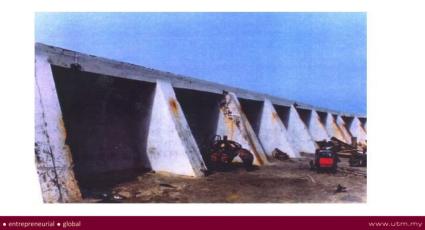


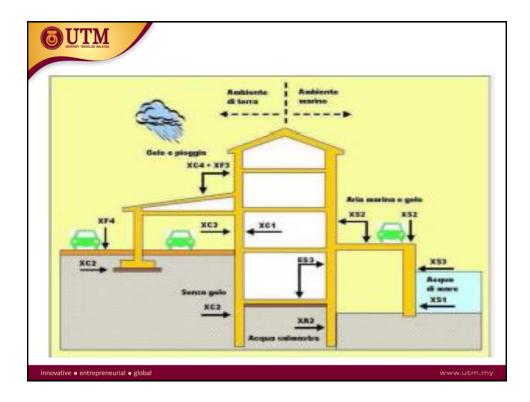




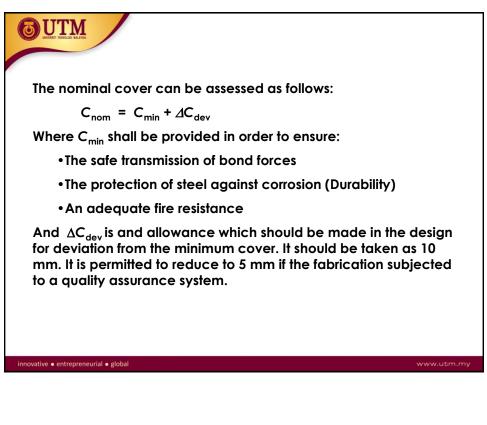

Steel stress	Maximum bar	spacing (mm)
(N/mm^2)	$w_{\rm k} = 0.4 {\rm mm}$	$w_{\rm k} = 0.3 \rm{mm}$
160	300	300
200	300	250
240	250	200
280	200	150
320	150	100
360	100	50


Steel stress (N/mm ²)	Maximum ba	ar size (mm)
	$w_{\rm k} = 0.4 {\rm mm}$	$w_{\rm k} = 0.3 \rm{mm}$
160	40	32
200	32	25
240	20	16
280	16	12
320	12	10
360	10	8
400	8	6
450	6	5




innovative • entrepreneurial • global

Deterioration of concrete structures

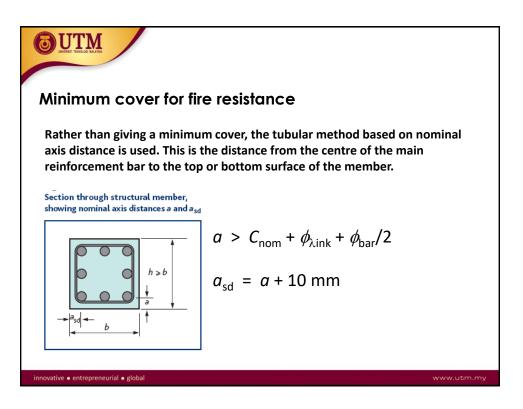

Corrosion of reinforcement by chloride attack in a marine environment

Minimum cover	for bond EN 1992-1-1				
Arrangement of bars	Minimum cover $c_{\min,b}^*$				
Separated	Diameter of bar				
Bundle	Equivalent diameter $\phi_n = \phi \sqrt{n_b} \le 55 \text{ mm}$ Where n_b is the number of bars in the bundle, which is limited to				
	$n_{\rm b} \le 4$ for vertical bars in compression				
	$n_{\rm b} \leq 3$ for all other cases				

Minimun	1 COV	er for d	urability	/		EN 199	92-1-1
Structural	Exposure Class according to Table 4.1 EC 2						
Class	X0	XC1	XC2/XC 3	XC4	XD1/XS1	XD2/XS2	XD3/XS3
S1	10	10	10	15	20	25	30
S2	10	10	15	20	25	30	35
S 3	10	10	20	25	30	35	40
S4	10	15	25	30	35	40	45
S 5	15	20	30	35	40	45	50
S 6	20	25	35	40	45	50	55

innovative • entrepreneurial • global

www.utm.my


(5) The minimum cover values for reinforcement and prestressing tendons in normal weight concrete taking account of the exposure classes and the structural classes is given by c_{min,dur}.

Note: Structural classification and values of *c*_{min.dur} for use in a Country may be found in its National Annex. The recommended Structural Class (design working life of 50 years) is S4 for the indicative concrete strengths given in Annex E and the recommended modifications to the structural class is given in Table 4.3N. The recommended minimum Structural Class is S1.

Orthurstown	Exposure Class according to Table 4.1							
Criterion	XO	XC1	XC2/XC3	XC4	XD1	XD2 / XS1	XD3/XS2/XS3	
Design Working Life of	increase	increase	increase	increase	increase	increase	increase class	
100 years	class by 2	class by 2	class by 2	class by 2	class by 2	class by 2	by 2	
Strength Class 1) 2)	≥C30/37	≥ C30/37	≥C35/45	≥C40/50	≥ C40/50	≥ C40/50	≥ C45/55	
	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by	
	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1	
Member with slab	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by	
geometry (position of reinforcement rot affected by construction process)	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1	
Special Quality	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by	
Control of the concrete production ensured	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1	

Table 4.3N: Recommended structural classification

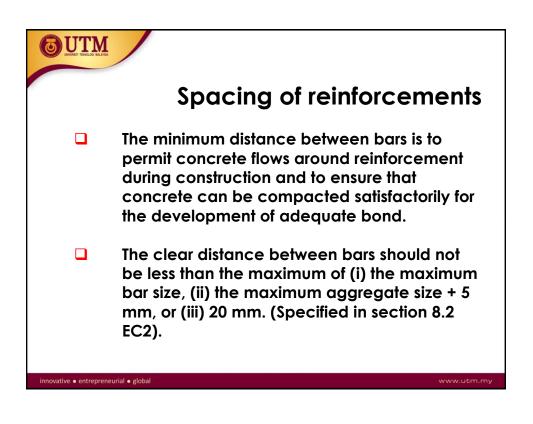
innovative ullet entrepreneurial ullet global

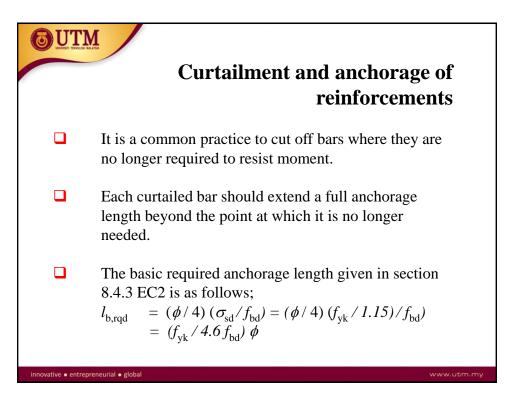
Minimum & Maximum Area of Reinforcement

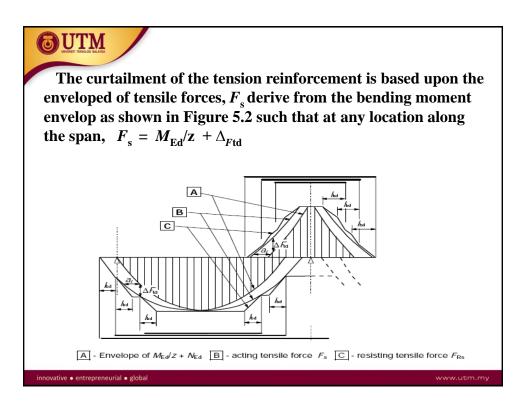
□ The minimum area of reinforcement that must be provided within tensile zone is

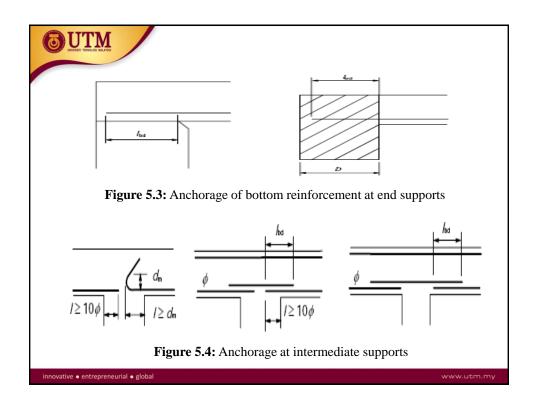
$$A_{\rm s,min} = k_{\rm c} k f_{\rm ct}, \, _{\rm eff} A_{\rm ct} / f_{\rm yk}$$

□ The minimum area of reinforcement for beam also specified in Section 9.2.1 as follows:


 $A_{s, \min} = 0.26 (f_{ctm}/f_{vk}) b_t d$ but not less than $0.0013 b_t d$


□ The limits $A_{s,max}$ specified by EC2 in Section 9.2.1 is $0.04A_c$ for tension or compression reinforcement.


innovative • entrepreneurial • global

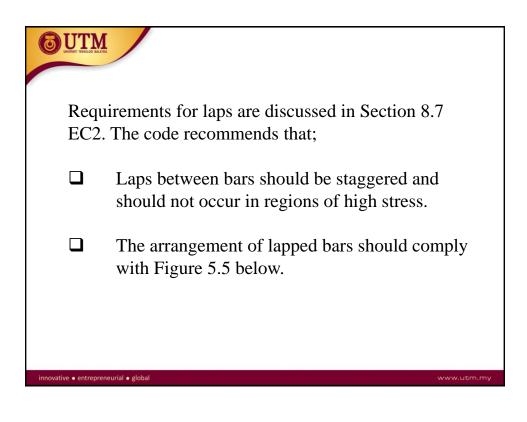

UTM

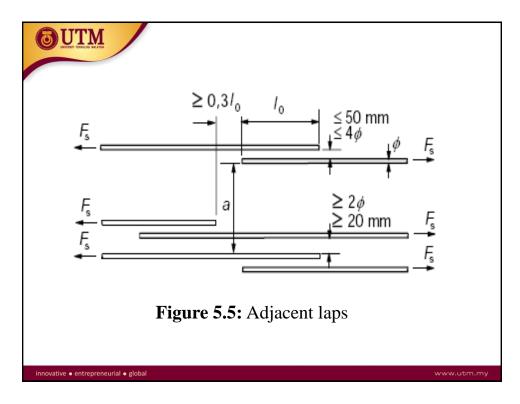
vww.utm.my

Simplified detailin	ng rules for beams
25%100%	25%
	< 0.08/
Simply supporte	d beam
*Reduced to 25% for equal span	$(0.30/ + a_{i}) \ge l_{bd}$
35% *	60% 100%
0.30% 10	0% 30%
innovative • entrepreneurial • global	www.utm.my

The design anchorage length l_{bd} mentioned above is given by, $l_{bd} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 l_{bd,rqd} \ge l_{b,min}$ where

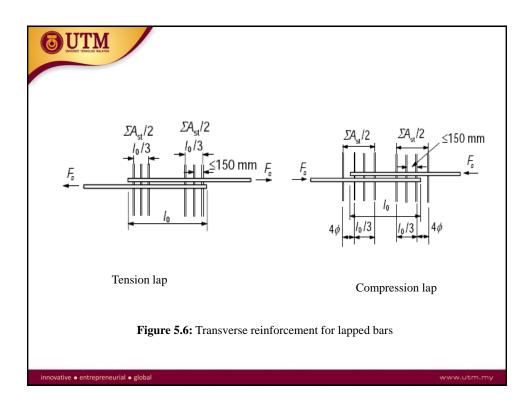
 $\begin{array}{l} \alpha_1, \ \alpha_2, \alpha_3, \ \alpha_4 \ and \ \alpha_5 = coefficient \ given \ in \ Table \ 5.5 \\ l_{\rm bd,rqd} = equation \ (5.4) \\ l_{\rm b,min} = the \ minimum \ anchorage \ length \\ for \ tension \ bars : \ max \ \{0.3 \ l_{\rm bd,rqd} \ ; \ 10\phi \ ; \ 100 \ mm \} \\ for \ compression \ bars : \ max \ \{0.6 \ l_{\rm bd,rqd} \ ; \ 10\phi \ ; \ 100 \ mm \} \end{array}$

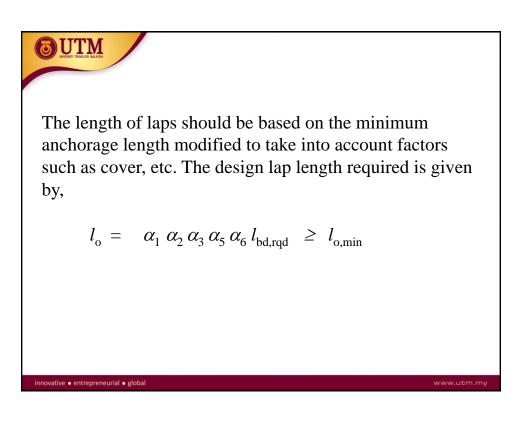

innovative • entrepreneurial • global

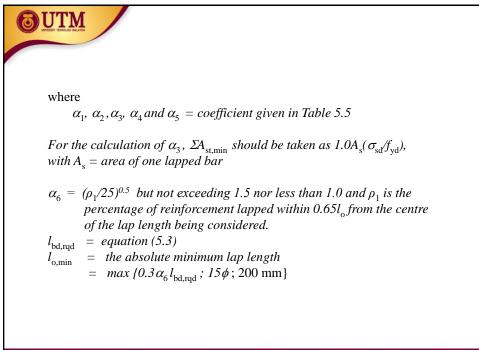

Value of <i>a</i>	α allows for the effect of	Type of anchorage	Reinforcement in		
	a anows for the effect of	Type of anchorage	Tension	Compression	
α_1	The shape of the bars	Straight	1.0	1.0	
		Other than straight	0.7 if $c_{\rm d} > 3.0\phi$ or 1.0 if not	1.0	
α2	Concrete cover to reinforcement	Straight	$1.0 - 0.15(c_{\rm d} - \phi)/\phi$ but ≥ 0.7 and ≤ 1.0	1.0	
		Other than straight	$1.0 - 0.15(c_{\rm d} - 3\phi)/\phi$ but ≥ 0.7 and ≤ 1.0	1.0	
α ₃	Confinement of transverse reinforcement not welded to the main reinforcement	All types of reinforcement	$1 - K\lambda$ but ≥ 0.7 and ≤ 1.0	1.0	
α ₄	Confinement of transverse reinforcement welded to the main reinforcement	All types, position and sizes of reinforcement	0.7	0.7	
α ₅	Confinement by transverse pressure	All types of reinforcement	$1 - 0.04\rho$ but ≥ 0.7 and ≤ 1.0	-	

UNIVERSITI TEKNOLOGI MALAYSA

Laps in reinforcements


Laps are required when bars placed short of their required length need to be extended. Laps are also required when the bar diameter has to be changed along the length. The purpose of lapping is to transfer effectively the axial force from the terminating bar to the connecting bar with the same line of action at the junction.



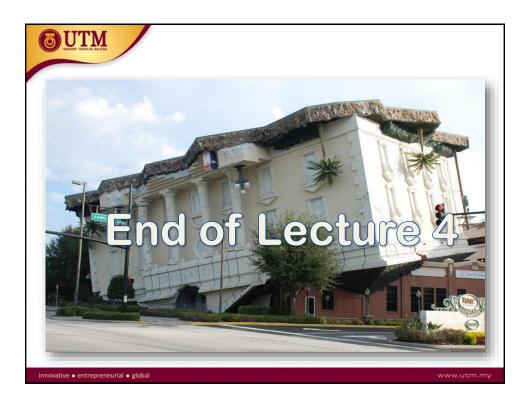


UNVERSITI TENDEDEI MALAYEA

•Transverse reinforcement must be provided around laps unless lapped bars are less than 20 mm diameter or there is less than 25 % lapped bars. In these cases minimum transverse reinforcement provided for other purposes such as shear links will be adequate. Otherwise transverse reinforcement must be provided, as shown in Figure 5.6, having a total area of not less than the area of one lapped bar.

innovative • entrepreneurial • global

UNITED TO UTTAL


 Table 5.8 Typical values of anchorage and lap lengths as a multiplied by bar size

Condition /Situation	Bond	Concrete Strength $f_{ck}/f_{cu}(N/mm^2)$					
	conditions	20/25	25/30	28/35	30/37	32/40	
Anchorage length (Tension or compression)	Good	47	40	37	36	34	
	Poor	67	58	53	51	49	
Lap length (Tension or compression)	Good	54	46	43	42	39	
	Poor	77	66	61	59	56	

Notes:

1. It is assumed that the bar size is not greater than 32 mm and α_1 , α_2 , α_3 , α_4 and α_5 all equal 1. 2. It is assumed that not more than 33% of the bars are lapped at one place, $\alpha_6 = 1.15$ For other situations refer to MS EN 1992-1-1, Clause 8.4.4

innovative • entrepreneurial • global

