Definition (s)

Value Engineering

A Systematic team effort aimed at improving the value as well as optimizing the life cycle cost (LCC)

Value Engineering is ...

A teamwork that focuses on improving the value via analyzing Functions.

Value Engineering

Improving (upgrading) Value is Customizing Quality and optimizing the life cycle cost (LCC)

Value Engineering (Larry Miles)

An organized effort directed at analyzing functions of goods, services to achieve those necessary functions and essential characteristics in the most cost-effective manner consistent with the customer requirements and expectations

Value Engineering (New)

An organized team effort aimed at analyzing Functions and Quality of projects (goods, services and processes) in order to generate practical costeffective alternatives that meet customer requirements.

الهندسة القيمية هي:

جهد جماعي منظم لتحليل الوظائف والجودة لغرض الخروج ببدائل عملية ذو تكلفة مناسبة وتلبي متطلبات ورغبات المستفيد

Value Engineering

Improve Value

تحسين القيمة

تفصيل الجودة

Customize Quality

Not always

Improving Quality

ترشيد النفقات

Optimize Cost

Not always

Reducing Cost

Value Engineering

Is actually coming up

with ...

الهندسة القيمية هي عملية الخروج ب

Useful ideas have to be:

Efficiency (Process)

الكفاءة (العمليات)

Effectiveness (Results)

الفعالية (النتائج)

Efficiency vs. Effectiveness

Useful Idea-

$$V = \frac{Function, Quality}{Cost}$$

EfficientDo things right

عمل الأشياء بشكل صحيح

→ Effective

Do the right thing

عمل الشيئ الصحيح

Life Cycle Cost

Total Cost

(Lump Sum)

Running, Follow on or Ownership cost

Are all the associated cost of running the facility. It covers energy, maintenance, repair replacement, staffing.. etc.

Where are the "Hidden Costs "?

التكلفة الكلية لـ

Life Cycle Costing

For a 160 bed Hospital - Life span is 25 years

Case 1: Initial Cost = SR 124 Millions

300 Bed Hospital - Life span is 25 years

Level of Influence on Cost

Who influence the total cost!

Level of Influence on Cost

Revenues

10.1

For an Economical
Life Span of 25 years
And Discount rate of 6%

Our annual Net is 6.3

3.4

Annual Expense

Revenues

16

If our revenue is 16 Million And annual cost of 2 Million

The break even will be in year 40

2

Annual Expenses

Recommendation Economic Life Span

Life Cycle

Life Cycle

LIFE CYCLE COST (Present Worth Method)										
Project										
PROJECT LIFE CYCLE (YEARS)										
DISCOUNT RATE (PERCENT)			Option 1		Option 2		Option 3			
Initial Costs			Estimated	PW	Estimated	PW	Estimated PW			
Sub-total Initial Cost (IC)										
Single Costs	Year	Factor								
Sub-te										
Annual costs	Escl. %	PWA								
Sub-tot										
Grand -Total Present W										

LIFE	CYCLE COST (F	Present	Worth	Metho	nd)				
Project:	Three Projects								
PROJECT LIFE CYCLE (YEARS)		30		ORIGINA		ALT. 1		ALT. 2	
DISCOUNT RATE (PERCENT)		10%		Project A		Project B		Project C	
Initial Costs				Est.	PW	Est	PW	Est.	PW
A)	Construction cost			55,000	55,000	70,000	70,000	90,000	90,000
Total Initial Cost Impact (IC)					55,000		70,000		90,000
Replacei	ment/Salvage Costs	Y:ear	Factor						
A)	Repare for Projact 1	7	0.5132	5,000	2,565				
B)	Repare for project 2	11	0.3505			7,000	2,453		
C)	Repare for project 3	13	0.2897					8,000	2,317
D)	Maintenance for all projects	10	0.3855	4,000	1,542	6,000	2,313	8,000	3,084
G)	Maintenance for all projects	20	0.1486	4,000	594	6,000	891	8,000	1,189
	Salvage	30	0.0573	5,000-	286-	20,000-	1,146-	35,000-	2,005-
Total Replacement/Salvage PW Costs					4,415		4,511		4,585
Annual c	osts	Escl %	PWA						
A)	Annual Maintenance	0%	9.4269	5,000	47,135	4,000	37,708	4,000	37,708
B)	Annual Revenue	0%	9.4269	3,700-	-34,880	8,000-	75,415-	13,000-	122,550-
Total Operation/Maintenance (PW) Costs				12,255		37,708-		84,842-	
Total Pre	esent Worth Life Cycle (71,670		36,803		9,743	

Space distribution for a hospital in Riyadh

Value Management

The Stages of the VM Study

Coordination Data Preparation Team Selection Modeling

Pre-Study

Information

Function Analysis

Idea Generation

Evaluation

Development

Presentation

VE Workshop

VE Study Report Implementation Plan Follow-Up

Post-Study

Value Management

The Stages of the VM Study

Coordination
Data Preparation
Team Selection
Modeling

الإعداد ، التخطيط، تحديد فريق العمل ، الجدولة

Preparation, Planning, Agenda

Pre-Study

Quality Model (Star Diagram)

Quality Model (Star Diagram for a Housing Project)

الأهم فالمهم

الأهم فالمهم First thing First

• • •

Office building

Pareto's Law the 80/20 rule

Hotel

Social Center

Hospital

\$

Fiber Optics

□ On/Off shore cable laying

Housing

Again

Why VE

Where senior managers invest their time

How the work day is divided.

According to a survey (In Saudi Arabia & USA 1996)

Where do senior managers invest their time ...

According to a survey (In Saudi Arabia, 1991)

When asked ... after the completion of the facility:-

Are you satisfied with what you've got?

A.

According to KSU Research, 1999

When asked ... after the completion of the facility:-

Are you satisfied with what you've got?

A

Value Engineering

Why?

Reasons for unnecessary Costs (Poor Value)

Reasons for unnecessary Costs

Reasons for unnecessary Costs

Reasons for unnecessary Costs (Poor Value)

- Lack of information
- Lack of Ideas
- Lack of time
- Temporary circumstances
- Honest, but wrong beliefs
- Bad habits and attitudes
- Over design (unrealistic safety factors)
- Change in the owner requirements
- Lack of communication coordination
- Using unsuitable standards & specification
- ♦ No LCC estimate
- Others

How many projects do you know that have some of these?

Reasons for unnecessary Costs (Poor Value)

Individuals	Organization	Technology	Environment
Leadership	Objectives	Products	Funding
Habits	Structure	Process	Timing
Attitudes	Planning	Skills	Politics
Flexibility	Communication	Expertise	Regulation

أسباب زيادة التكاليف

Honest, but wrong beliefs

Better Quality

Less cables

Less Voltage drop

Less Construction

Less Cost

\$ 1.1 M Saving

Codes, Regulation, standardizations, specification

Saudi annual loss of not having standards:

- Doors & Windows > one Billion

- Electrical Plugs > 600 Millions
- Masonry Block

-

