FINAL INVESTIGATION REPORT BY SUBSTRUCTURE ANALYSIS AND SURROUNDINGS COMMITTEE

12 MARCH 2008

PERAKUAN PENYERAHAN DOKUMEN LAPORAN

OLEH

BADAN PENYIASATAN BEBAS (INDEPENDENT BOARD OF INQUIRY) KES KEJADIAN BANGUNAN RUNTUH (KOMPLEKS PELANCONGAN) DI PULAU BANDING, GERIK, PERAK DARUL RIDZUAN.

Dengan ini saya memperakukan bahawa telah menyerahkan laporan seperti diatas kepada Pengerusi Badan Penyiasatan Bebas (Indepenent Board Of Inquiry) Kes Kejadian Bangunan Runtuh (Kompleks Pelancongan) Di Pulau Banding, Gerik, Perak Darul Ridzuan pada 12-03-2008.

)

L L L . L . C . ENGR. MOHAMAD NOR BIN OMAR
Ketua Pasukan (Substructure Analysis & Surroundings)
Saksi,

(Nama:

(Jawatan:

FINAL INVESTIGATION REPORT BY SUBSTRUCTURE ANALYSIS AND SURROUNDINGS COMMITTEE

		CONTENTS	Page
1.0	Intro	duction	1
2.0	Exte	nt and Sequence of Failure	1
3.0	Desi	gn Records	2
4.0	Grou	und Surface Profile	2
5.0	Rain	fall Records	3
6.0	Geol	ogy and Geomorphology	4
7.0	As- b	ouilt Drainage Facilities	4
8.0	Subs	surface Investigation	5
	8.1 8.2 8.3	Soil Investigation Sub-Surface Profile from Boreholes Groundwater	5 6 7
9.0	Soil F	Properties	7
	9.1	Bulk Density	7
	9.2	Effective Shear Strength from Triaxial Tests	8
10.0	Analy	sis of Results	9
	10.1	Slope Stability	9
		10.1.1 Cross-sections and Locations	9
		10.1.2 Methodology and Assumptions	10
		10.1.3 Stability Analysis – Global and Localised Failures	11
	10.2	Pile Foundation	13
		10.2.1 Building Foundations on Slope	13
		10.2.2 Pile Bearing Capacity Calculations	14
		10.2.3 Mobilized Pile Capacity Measured from	
		Dynamic Load Tests (PDA)	15
11.0	Concl	usions	16

PLATES

Plate 1A	Slip At the Edge and Below the Building
Plate 1B	Hairline Cracks In Localized Beams & Walls
Plate 1C	Columns Deflected Towards The Lake Site
	and Drainage Facilities Heavily Silted Prior
	To Collapse of the Building
Plate 1D	Residual Soils of Gravelly silt and Sand at
	The Collapse Area
Plate 1E	Discharge Points of Rainwater & Drainage Facilities
& Plate 1F	
FIGURES	3
Fig. 1.1	Close Up View of Pulau Banding Resort After
	The Collapse (Captured on 15 th January 2008)
Fig. 1.2	Failure Scar Captured In The Survey Plan Before
	Building Construction
Fig. 1.3	Pelan Susunatur Kerja Tanah (Dwg. No. CT18/68/03/EW-1)
Fig. 1.4	Design Cross-Section of Section 2-2 & 3-3
	(Fail No. : JR.PK.442/2004(A) – 22-09-2004
Fig. 1.5	As-Built Survey Plan
Fig. 1.6	Cross-Section CH. 1200
Fig. 1.7	Daily Rainfall Record At Banding Station 30-Days
	Prior To Collapse Of Building
Fig. 1.8	Location Of Soil Investigation
Fig. 1.9	Simplified Engineering Borehole Log
Fig 1.10	Goundwater Monitoring in Standpipes
Fig. 1.11	CIU Triaxial Test
Fig. 1.12	Cross-Section F-F

Fig. 1.13 (a) Slope Stability Analysis to 1.13(j) of Cross Sections

Fig 1.14 Summary of Pile Lengths

APPENDICES

Table 1.1 Paras Air Tasek Temenggor bagi Bulan September,

Oktober dan November pada jam 8.00pg (Bahan

.!

Rujukan dari TNB Gerik)

Table 1.9 Calculations of Pile Capacity

REFERENCE

Gue SS & Chen CS (1998) A Comparision of Dynamic & Static Load Test on Reinforced Concrete Driven Piles Proceedings of the 13th Southeast Asian Geotechnical Conference 16th – 20th November 1998 – Taipei, Taiwan

ACKNOWLEDGEMENT

The committee would like to express our great appreciation to the following government organizations who assisted in the investigation and preparation of this report :

- i) Jabatan Mineral dan Geosains (JMG)
- ii) Jabatan Pengairan dan Saliran (JPS)
- iii) Jabatan Meteorologi Malaysia (JMM)
- iv) Pusat Remote Sensing Negara (MACRES)
- v) Jabatan Ukur dan Pemetaan (JUPEM)

JKR would also like to extend our gratitude to:

- i) Ir. Dr. Gue See Sew from G&P Professionals Sdn Bhd for the analyzing and interpretation of the data in the process of reviewing the design work of this project.
- ii) Kumpulan IKRAM Sdn Bhd Cawangan Utara for the support in carrying out the site investigation and survey works, and laboratory testing.

FINAL INVESTIGATION REPORT BY SUBSTRUCTURE ANALYSIS AND SURROUNDINGS COMMITTEE

1.0 Introduction

The Committee on "Substructure Analysis and Surroundings" aims to complement the other two technical subcommittees in providing an independent professional investigation and to assist the independent board of inquiry to carry out its entrusted duty in accordance with the four stated terms of reference as established.

The investigation shall include findings based on site evidence and analysis to be tabled to the main committee.

2.0 Extent and Sequence of Failure

Based on the photograph captured on 24th October 2007 by JKR Perak (ref: Preliminary Report by Forensic & Structure Unit JKR Perak), slope failure at the edge and under the building was observed as shown in Plate 1A. Cracks were also observed at a few locations on the beams and walls of the building (Plate 1B).

On the 23rd Sept 2007 during the second site visit it was observed a few piles beneath the columns of the building were also exposed and deflected. The columns at this zone had also deflected towards the lake side as shown (Plate 1C).

The slope extended down into the lake where water level fluctuates from 240.03m to 244.33m based on water level records Tasek Temenggor by TNB Gerik without toe protection as shown in Table 1.1.

On 10th November 2007, part of the building collapsed followed by a total collapse of the whole building on 13th November 2007.

The scar of the failed slope is shown in Fig.1.1.

3.0 Design Records

The consultant confirmed (reference: interview on 4th February 2008) site reconnaissance study was not carried out. The consultant explained that the conceptual design was intended to be eco-friendly whereby the building was supposed to be built on natural ground without disturbing the existing site and soil condition.

There was only one(1) borehole being carried out during design stage and no undisturbed samples were ordered for the tests to obtain the necessary soil parameters for slope analysis.

No slope stability analysis and pile foundation design was carried out and these were confirmed by the design consultant during the interview.

4.0 Ground Surface Profile

The building is located on the eastern side slope of Pulau Banding comprising of both cut and fill slope.

On the west of this building, there is a cut slope (C1) outside the building collapse area comprising of 8 berms with about 1:1 slope (45%), as

indicated in Figure 1.1. A slope failure (R1) was observed on the day of site visit (26th July 2007) and had blocked the inner roadside drain of the cut slope. This failure was also captured in the survey plan by Jurukur Abadi produced on 7th Jan 2004 (as shown in Figure 1.2). This figure also shows the existence of depression in southeast direction at failure location before site possession on 30th Ogos 2004.

The working platform (formation level) was designed to a profile by cutting the earth at the high area and filling the original ground at the lower level. Generally both the cut and fill slopes are designed to a gradient of 1v:1.5h to 1v:1h, as shown in Figures 1.3 and 1.4. The As-built Drawings also indicate gradients up to 1v:1h in both the cut and fill slopes, as shown in Figures 1.5 and 1.6.

The slope extended down into the lake where water level fluctuates to about 4 meters without toe protection in the area of fluctuation, and this was confirmed by the design consultant during the interview on the 4th. February 2008. A prudent design should have to provide toe protection such as rip-rap, etc.

5.0 Rainfall Records

Rainfall data before the event were obtained from Jabatan Pengairan dan Saliran (JPS) and Jabatan Meteorologi Malaysia (JMM). The JMM rainfall stations are located at Ayer Dala and at Kemar which are 15 km and 35 km away from the collapsed building respectively. JPS has 3 rainfall stations nearby, the nearest is located at Pulau Banding Station approximately 1.5 km from the building site, the others located 25 km and 29 km away from the site respectively. The rainfall station located 1.5 km

.!

away from the site is used for reference in view of its close proximity to the site.

Analysis of the rainfall pattern was carried out for the 30 and 7-day period prior to 13th November 2007. The rainfall of 355mm corresponding with 22 rainy days was recorded within the 30-day period prior to the total collapse of the building. Figure 1.7 shows the 30-day rainfall pattern. A total of 138mm rainfall was recorded during the 7-day period prior to the event. The total rainfall of 355mm at Pulau Banding Station 30 days prior to the collapse is normal and the return period is less than 1 in 5 years.

6.0 Geology and Geomorphology

The site is located in a geologically region known as Kruh Formation. It is made up of meta-tuff that was formed during the Silurian and Devonian period. The mineral composition of fresh rocks consists mainly of silica with some mica and quartz lenses in the between the foliation measuring from several milliliters to several centimeters. The residual soils is of gravelly SILT (Plate 1D) and the soil investigation confirms the observation. However there is no geological fault found within the building collapse area.

7.0 As- built Drainage Facilities

The as-built drainage system as shown in Figure 1.5 was such that, the surface runoff from the upslope would be intercepted by concrete drain

and discharged away from the building site. The water from down pipes of the buildings would be collected by concrete drain of 450mm and 600mm width and discharged into the lake by cascaded drain.

JKR Perak reported that the condition of some of drainage facilities before the building collapse occurred appeared to be heavily silted and have settled following the slope instability movements (Plate 1C). The discharge points of the rainwater down pipes had also been silted up or damaged locally and drainage facilities were completely damaged particularly at the failure location at the down slope (Plate 1E & 1F).

8.0 Subsurface Investigation

8.1 Soil Investigation

The proposed soil investigation program consisted of:

- Four (4) numbers exploratory boreholes,
- Thirty two (32) numbers JKR probe tests,
- Standard Penetration Tests (SPT) at every 1.0m interval,
- Disturbed and undisturbed samplings,
- Four number standpipes (one in each borehole), and
- A series of laboratory tests.

The soil investigation was carried out by Kumpulan IKRAM Sdn Bhd between 28th December 2007 till 13th January 2008. The soil investigation results are presented in the factual report prepared by Kumpulan IKRAM Sdn Bhd.

The locations of boreholes, standpipes and JKR probe tests are shown in Figure 1.8

8.2 Sub-Surface Profile from Boreholes

Four number exploratory boreholes, referred to as BH1, BH3, BH5 and BH6 were drilled. Figure 1.9 shows the simplified engineering borehole logs derived from the soil classifications based on the grain size distribution (sieve analysis) tests and Atterberg limits tests on the disturbed and undisturbed samples obtained from the boreholes. The soil classifications were performed according to the British Soil Classification System in BS 5930:1999 (Code of Practice for Soil Investigations).

In general, the subsoils can be classified into three layers based on soil type and Standard Penetration Test (SPT-N) value, as follows:

- (a) Subsoil 1 generally consists of soft to very stiff gravelly SILTS of SPT-N values between 2 and 21.
- (b) Subsoil 2 generally consists of medium dense to dense silty GRAVEL of SPT-N values between 18 and 35.
- (c) Subsoil 3 generally consists of very dense silty GRAVEL of SPT-N values greater than 50.

Meta-tuff bedrock was encountered in all the four boreholes. The depths of meta-tuff bedrock vary from 4.0m to 15.0m, as summarized in Table 1.2.

Table 1.2: Depth of Meta-tuff Bedrock

Borehole	Reduced Level of Borehole (RL m)	Depth to Meta-tuff Bedrock (m)	Reduced Level of Meta-tuff Bedrock (RL m)
BH3	271.582	11.70	259.882
BH6	268.480	15.00	253.480
BH5	261.096	5.50	255.596
BH1	249.735	4.00	245.735

In general, the top 1.5m of meta-tuff bedrock is graded as Grade III (moderately weathered), and the subsequent 3.0m is graded as Grade II (slightly weathered).

8.3 Groundwater

The groundwater table at the site was monitored from four standpipes since 1st January 2008 to 20th February 2008, as shown in Figure 1.10 The depths of groundwater measured in standpipes vary from 0 to 11.50m.

9.0 Soil Properties

9.1 Bulk Density

Table 1.3 presents the bulk density values obtained from the laboratory tests on the soil samples. The bulk density values range between 1.524 and 1.926Mg/m³ with an average value of 1.816Mg/m³, or equivalent to an average bulk unit weight of 17.8kN/m³.

Table 1.3: Bulk Density of Soil

Borehole	Sample	Depth (m)	Soil Type	SPT-N Values above and below Undisturbed Sample	Bulk Density (Mg/m³)	Remark
ВН3	MZ1	1.00 –2.00	Very clayey GRAVEL	Nil, 3	1.847	From UCT
					1.839	From UCT
	955 WALE D				1.868	From CIU
BH5	MZ1	1.00 – 2.00	Sandy SILT	Nil, Nil	1.845	From CIU
					1.821	From CIU
					1.838	From DSB
	MZ3	6.00 - 7.00	Slightly	6, 18	1.526	From UCT
		0.00 7.00	gravelly SILT	0, 10	1.524	From DSB
	MZ4	MZ4 8.00 – 9.00	Sandy SILT	18, 50	1.833	From CIU
					1.821	From CIU
BH6					1.798	From CIU
]					1.848	From DSB
					1.926	From CIU
	MZ5	M75 12 00 - 13 00	Gravelly SILT	12, 27	1.903	From CIU
	17120	12.00	Gravelly GILT	12, 27	1.891	From CIU
				3	1.923	From DSB
	Average 1.816Mg/m³ or 17.8kN/m³					

Note: UCT denotes unconfined compression test, CIU denotes isotropically consolidated undrained triaxial tests, and DSB denotes direct shear box test.

9.2 Effective Shear Strength from Triaxial Tests

Only the results from isotropically consolidated undrained (CIU) triaxial tests were considered in determining the shear strength parameters. Results from shear box tests were not included because the preparation of the square shaped sample of 60 mm by 60mm (which have diagonal of 85 mm) from the Mazier samples of 75mm diameter are doubtful and so are the results obtained.

The three numbers of CIU samples obtained from the exploratory boreholes are summarized in Table 1.4.

Table 1.4: Results of CIU Triaxial Tests

Borehole	Sample	Depth	Soil Type	SPT-N Values above and below	Effective Cohesion, C'	Effective Angle of Friction, φ'
20.011010	Campic	(m)		Undisturbed Sample		(°)
BH5	MZ1	1.00 - 2.00	Sandy SILT	Nil, Nil	6.0	28.0
вн6	MZ4	8.00 - 9.00	Sandy SILT	18, 50	15.0	26.0
D110	MZ5	12.00 - 13.00	Gravelly SILT	12, 27	8.0	28.0

The average value of effective shear strength can be obtained by plotting the stress invariant $s' = (\sigma'_1 + \sigma'_3)/2$ versus stress invariant $t' = (\sigma'_1 - \sigma'_3)/2$ for all the three samples, as shown in Figure 1.11. The average effective cohesion (C') is 9.7kPa and the average effective angles of friction (ϕ') is 27.0°.

10.0 Analysis of Results

10.1 Slope Stability

10.1.1 Cross-sections and Locations

The following two cross-sections are used for slope stability analyses:

- (a) Cross-section CH. 120 from the As-built Survey Drawing dated 27 April 2006 prepared by Jurukur Rakyat. The As-built Survey Drawing was reproduced as Figure 1.5 and the cross-section was reproduced as Figure 1.6.
- (b) Cross-section F-F from the latest Survey Plan (after the collapse of the building) dated 15 January 2008 prepared by Abdullah Taha & Rakan-Rakan. The Survey Plan was reproduced as Figure 1.8 in Section 8.0 of this report, and the cross-section was reproduced as Figure 1.12.

-,!

10.1.2 Methodology and Assumptions

Analysis of slope stability were carried out using the limit equilibrium method.

For each cross-section, stability analyses were performed for the following two sets of effective shear strengths of soil:

(a) Case 1: Average effective shear strength obtained from the CIU triaxial tests from mazier samples obtained from the site after the failure, as shown in Table 1.5.

Table 1.5: Average effective shear strength from CIU triaxial tests

Table 1131 1131 and a second of the control of the						
2 222	Effective	Effective Angle				
Soil Type	Cohesion, C'	of Friction, φ'				
	(kPa)	(°)				
Subsoil 1		11				
(Soft to very stiff gravelly SILTS of	9.7	27.0				
SPT-N values between 2 and 21)		507-507-07				
Subsoil 2	4.0	20.0				
(Medium dense to dense silty GRAVEL of	1.0	38.0				
SPT-N values between 18 and 35)						

(b) Case 2: Soil strengths obtained from a previous project of the investigator in the same island, as shown in Table 1.6.

Table 1.6: Soil strength from a previous project of the investigator in the same island

Soil Type	Effective Cohesion, C' (kPa)	Effective Angle of Friction, φ' (°)
Subsoil 1	3.0	32.0
Subsoil 2	1.0	38.0

The bulk unit weight of subsoil adopted in the analyses was assumed to be 17.8kN/m³ (see Section 9.1 of this report).

The lowest groundwater levels (see Section 8.3 of this report) were used in the analyses. It should be noted that groundwater can rise higher than the adopted, particularly during the monsoon seasons. When the groundwater level rises, it gives negative impact to the stability of slope.

The water level in the lake was assumed to be at RL 244.33m, which is also the flood level recorded on 1st September 2007. Again, the lake water level can rise higher than the adopted, particularly during the monsoon seasons. When the groundwater level rises, it gives negative impact to the stability of slope.

No surcharges and no seepage forces due to transient flow of water were considered in the analyses.

The minimum factor of safety that is acceptable is 1.4 as recommended in Geotechnical Manual for Slopes published by the Geotechnical Engineering Office of Hong Kong.

10.1.3 Stability Analysis - Global and Localised Failures

The computed factors of safety (FOS) for all slope stability analyses performed are presented in Table 1.7.

Table 1.7: Results of Slope Stability Analyses

Table 1.7: Results of Slope Stability Analyses					
Figure No.	Description	Factor of Safety	Comments		
1.13(a)	 Cross-section CH. 120, Case 1 Subsoil 1: C' = 9.7kPa, φ' = 27.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° Stability check for upper slope 	1.34	 Potential deep slip failure Inadequate FOS (<1.4) Unacceptable 		
1.13(b)	 Cross-section CH. 120, Case 1 Subsoil 1: C' = 9.7kPa, φ' = 27.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° Stability check 1 for lower slope 	0.74	 Shallow slip failure Inadequate FOS (<1.4) Failure Expected (<1.0) 		
1.13 (c)	 Cross-section CH. 120, Case 1 Subsoil 1: C' = 9.7kPa, φ' = 27.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° Stability check 2 for lower slope 	0.99	 Relatively deep slip failure Inadequate FOS (<1.4) Failure Expected (<1.0) 		
1.13(d)	 Cross-section CH. 120, Case2 Subsoil 1: C' = 3.0kPa, φ' = 32.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° Stability check for upper slope 	1.15	 Potential relatively deep slip failure Inadequate FOS (<1.4) Unacceptable 		
1.13(e)	 Cross-section CH. 120, Case2 Subsoil 1: C' = 3.0kPa, φ' = 32.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° Stability check 1 for lower slope 	0.72	 Shallow slip failure Inadequate FOS (<1.4) Failure Expected (<1.0) 		
1.13(f)	 Cross-section CH. 120, Case2 Subsoil 1: C' = 3.0kPa, φ' = 32.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° Stability check 2 for lower slope 	0.99	 Deep slip failure Inadequate FOS (<1.4) Failure Expected (<1.0) 		
1.13(g)	 Cross-section F-F, Case 1 Subsoil 1: C' = 9.7kPa, φ' = 27.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° 	1.16	 Potential deep slip failure Inadequate FOS (<1.4) Unacceptable 		
1.13(h)	 Cross-section F-F, Case 2 Subsoil 1: C' = 3.0kPa, φ' = 32.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° 	1.12	 Potential deep slip failure Inadequate FOS (<1.4) Unacceptable 		
1.13(i)	 If groundwater level rises for 1.0m Cross-section F-F, Case 1 Subsoil 1: C' = 9.7kPa, φ' = 27.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° 	0.97	 Deep slip failure Inadequate FOS (<1.4) Failure Expected (<1.0) 		
1.13(j)	 If groundwater level rises for 1.0m Cross-section F-F, Case 2 Subsoil 1: C' = 3.0kPa, φ' = 32.0° Subsoil 2: C' = 3.0kPa, φ' = 36.0° 	0.91	 Relatively deep slip failure Înadequate FOS (<1.4) Failure Expected (<1.0) 		

In the case of Cross-section CH. 120, the computed factors of safety are less than unity, hence failures are expected. As for Section F-F, the computed factors of safety are about 1.1, which are unacceptable

because the required is 1.4. If the groundwater table (as well as the lake water level) in Section F-F rises for 1.0m during the monsoon season, the factors of safety reduces from about 1.1 to about 0.9, and failure would be expected. The lake water level during the SI carried out by IKRAM on 29th December 2007 was 247.234 meters.

Results of the slope stability analyses also show that the two sets of soil strength parameters (Case 1 and Case 2) do not make significant difference on the computed factor of safety.

10.2 Pile Foundation

10.2.1 Building Foundations on Slope

The adopted foundation system for the building founded on slope consisted of 250mm x 250mm reinforced concrete driven piles. The total pile point was 209 but only 192 number pile driving records were made available for this investigation.

The pile lengths are summarized and plotted in Figure 1.14. Statistical analyses on pile length show that

- (a) Minimum pile length = 2.7m
- (b) Maximum pile length = 22.2m
- (c) Average length = 8.7m

In average, the pile lengths were shorter than 9.0m and the minimum pile length was merely 2.7m. Out of the 192 piles, a total of 105 piles (about 54%) have lengths of not more than 9m. Short piles are comparatively weak in lateral resistance because of the low confining stresses resulted from the subsoil.

10.2.2 Pile Bearing Capacity Calculations

It is desired to assess the available pile bearing capacity particularly for the short driven piles. The following information was made available:

- (a) The adopted working load for 250mmx250mm Grade 45 reinforced concrete driven piles was about 75 Ton or 750kN.
- (b) The proposed hammer weight used for pile driving was 2.5 Ton and the hammer drop height was 750mm.
- (c) The pile set adopted for pile driving termination was 20mm per 10 blows.

In general, pile termination will be achieved when driving concrete piles in hard or very dense soils of SPT-N about 50, depending on the overburden soils and length of the pile. For smaller piles, the SPT-N value at termination can be much lower. It is expected in the pile capacity calculation that the bearing soil stratum has SPT-N values of 30 - 50.

Table 1.8 summarizes the expected ultimate bearing capacities for different pile lengths. The factors of safety over the adopted working load of 750kN range from 1.22 to 3.44, compared to the commonly adopted factor of safety of 2 or higher. Note that BS 8004:1986 (Code of Practice for Foundations) recommends a factor of safety of between 2.0 and 3.0 for a single pile. Details of pile capacity calculations are given in Table 1.9.

Table 1.8: Estimated Ultimate Bearing Capacity of Pile

60 2000 100 20 20 20	SPT-N = 30 at	Pile Termination	SPT-N = 50 at Pile Termination		
Pile Length (m)	Ultimate Bearing Capacity (kN)	Factor of Safety	Ultimate Bearing Capacity (kN)	Factor of Safety	
2.7 (minimum)	912	1.22 (<2.0, Inadequate)	1,412	1.88 (<2.0, Inadequate)	
8.7 (average)	1,272	1.70 (<2.0, Inadequate)	1,772	2.36 (≥2.0, Acceptable)	
22.2 (maximum)	2,082	2.78 (≥2.0, Acceptable)	2,582	3.44 (≥2.0, Acceptable)	

Pile capacity calculations show that the expected ultimate bearing capacity to be about 1,290kN for pile length up to 9m if the SPT-N value at pile termination is 30. If the SPT-N value at pile termination is 50, then the expected ultimate bearing capacity is 1,250kN to 1,790kN. The factors of safety over the adopted working load of 750kN therefore may range from about 1.0 to 2.4 for pile length up to 9m, compared to the commonly adopted factor of safety of 2 or higher. Note that BS 8004:1986 (Code of Practice for Foundations) recommends a factor of safety of between 2.0 and 3.0 for a single pile. Details of pile capacity calculations are given in Table 1.9.

10.2.3 Mobilized Pile Capacity Measured from Dynamic Load Tests (PDA)

During the interview on 4th February 2008, the Consultant informed that no static load test was carried out because of the difficult site conditions. Instead, a total of 12 numbers (about 6% of total piles) dynamic load test (PDA) were performed to determine the pile mobilized capacity. The PDA test results showed that all the 12 number pile tested were able to mobilize capacities of at least twice the working load, i.e. with factors of safety of at least 2. The predicted pile top settlements under the working load and twice the working load were also acceptable according to the Specification for Piling Works in the Contract.

It is prudent to accept the results of the dynamic load test if they are calibrated with the conventional static load tests. In this case, no conventional static load was done. Gue & Chen (1998) have indicated that the results of the dynamic load test could predict its capacity by more than 60% of the conventional static load test.

11.0 Conclusion

(a) Soil Investigation

Only one borehole and nine Mackintosh probes were carried out and this is grossly inadequate. There were also no undisturbed samples collected for tests to obtain soil shear strength parameters needed for slope analyses. This is unacceptable and inappropriate.

(b) Designs

No slope stability and pile foundation analyses were carried out. This is imprudent.

(c) Slope stability

The Sub-Committee analyses indicate that the factors of safety are in the range of 0.72 to 1.34, which indicate failures are expected for Factor Of Safety = 1 in some of the slopes and creeps are expected in the slopes having inadequate Factor Of Safety. Both of these will induce additional bending moments and shear forces in the structure of the building.

(d) Piles

Factors of safety of the piles vary from 1.22 to 2.78 compared to the required factor of safety of 2 or higher. Piles with lower factors of safety especially near to unity are expected to settle more. This will induce

additional bending moments and shear forces in the structure of the building.

(e) Mechanism of Failure

Localized slip failures are expected for those slopes having factor of safety less than 1, and creep will occur on those slopes having factor of safety less than 1.4, the required factor of safety. Any of these conditions will cause lateral and vertical movements of the slopes and the pile foundations. When these happen, additional bending moments and shear forces would be induced in the structure of the building, and the structure will fail when the bending and shear capacities are exceeded.

PLATES

Plate 1A : Slip at the edge and below the building

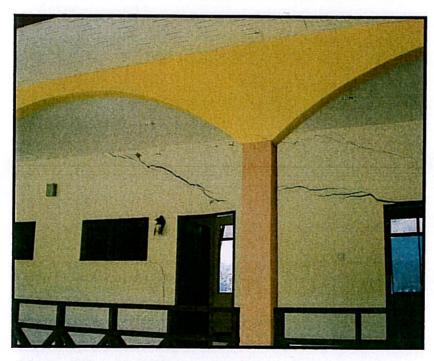


Plate 1B: Hairline cracks in localized beams and walls

Plate 1C: Columns deflected towards the lake side and drainage facilities heavily silted

Plate 1D: Residual soil of gravelly silt and sand at the

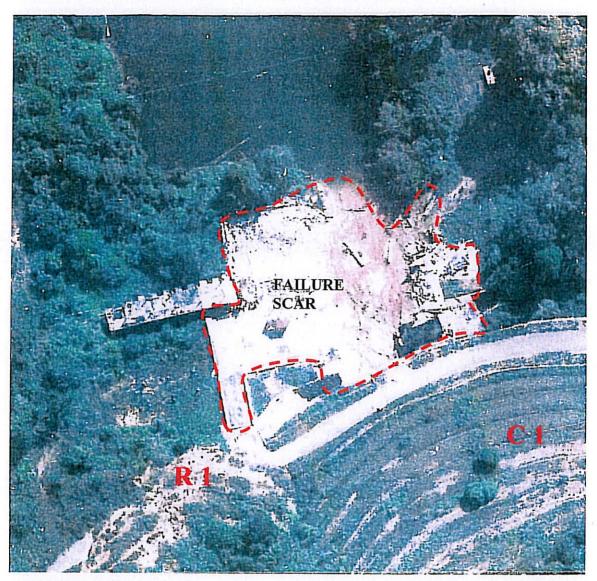

Plate1E

Plate 1F

Plate 1E & 1F: Discharge points of rainwater and drainage facilities completely damage at failure location

FIGURES

SKALA FOTO UDARA 1:10 000 SKALA PELOT 1:5 000

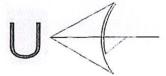


Figure 1.1 : Close up view of Pulau Banding resort after the collapse (captured on 15th January 2008)

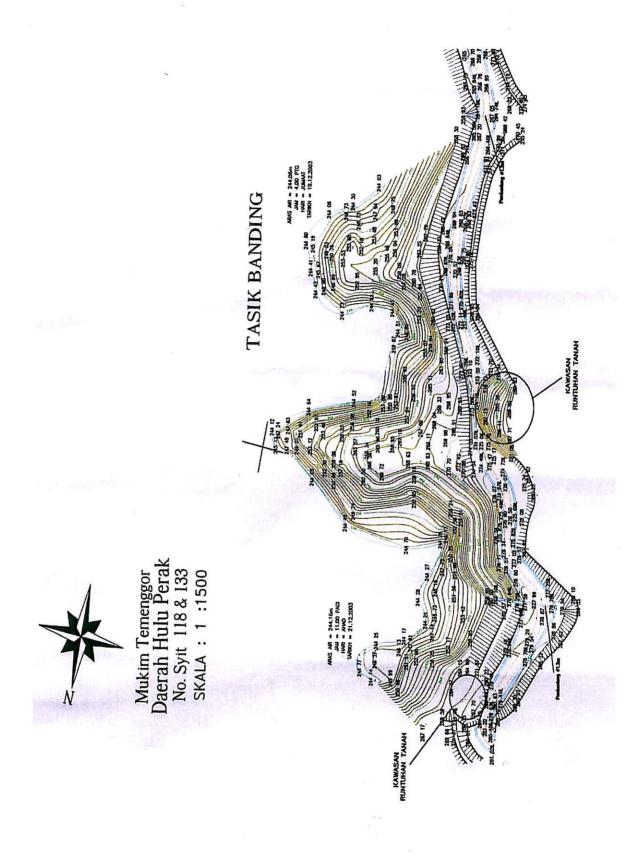


Figure 1.2: Failure scar captured in the Survey Plan before building construction.

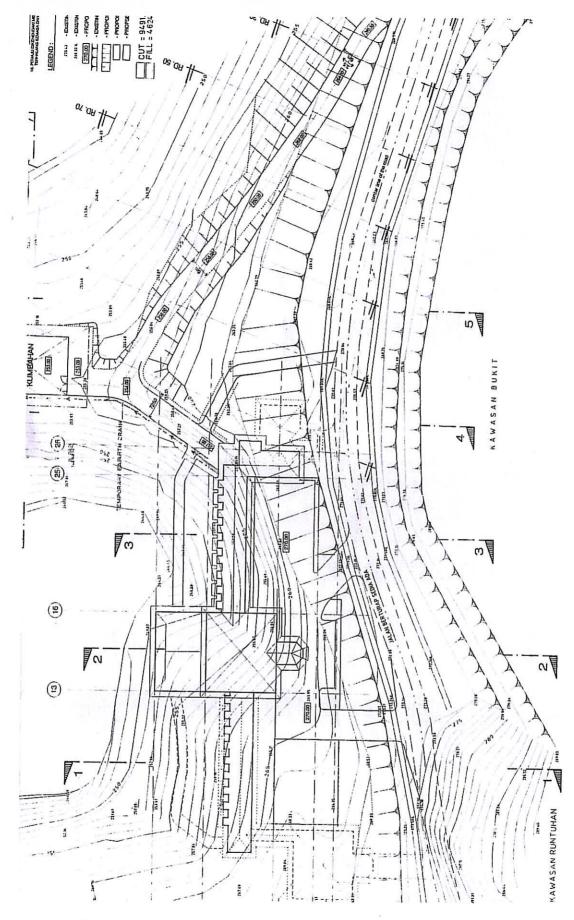
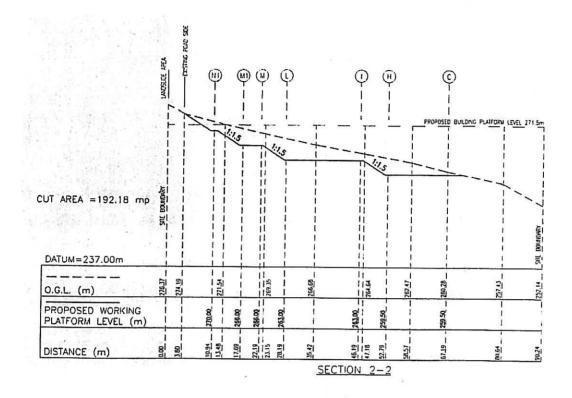



Figure 1.3 : Pelan susunatur kerja tanah (Dwg. No. CT18/68/03/EW-1)

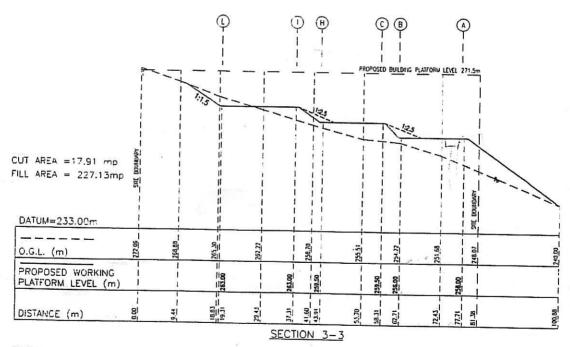
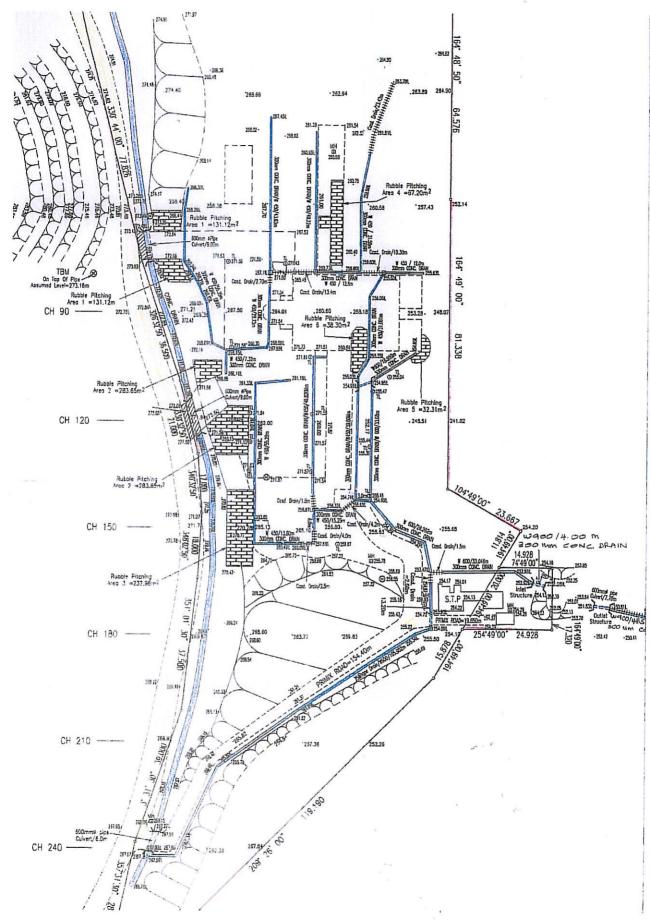



Figure 1.4 : Design cross section of section 2-2 & 3-3 (FAIL NO. : JR.PK.442/2004(A) - 22-09-2004)

Note: Extracted from As-Built Survey Drawing [File No.: JR.PK.442/2004 (A)], which was prepared by Jurukur Rakyat

Figure 1.5: As-built Survey Plan

지 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시	91.57	54705	201\$2
	65.13	151421	15'96'81
五	66'15	86.74S	
NEUS CONTRACTOR OF THE PROPERTY OF THE PROPERT	82'05	Ť	71.525
	19,14	S25'42	
	06.ÞE		960.00
BH5	3142 ₋	59.753	
CONTROL OF THE PROPERTY OF THE	१९७३	Se233	
	OP,BI		88800
	01.01	86.835	ÞZ892
HE 1 2 2 2	DE.4		09.575
SUBSUIL 2 SUBSUIL 2 SUBSUIL 3 SUBSUI	000.0	E8.175	₽67 €2
DATUM 226.00m	Distance (m)	Original Ground Level (m)	As-Built Level (m)
Led	SIG	<u> </u>	As-

Note: Reproduced from As-Built Survey Drawing [File No.: JR.PK.442/2004 (A)], which was prepared by Jurukur Rakyat

Figure 1.6: Cross-section CH. 120

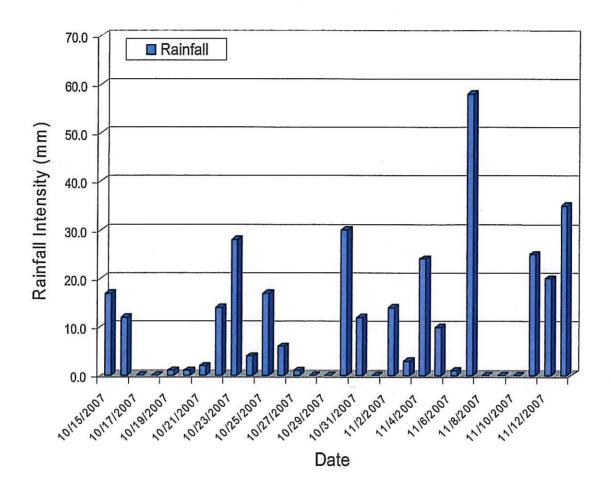


Figure 1.7 : Daily rainfall record at Banding Station 30 days prior to the building failure

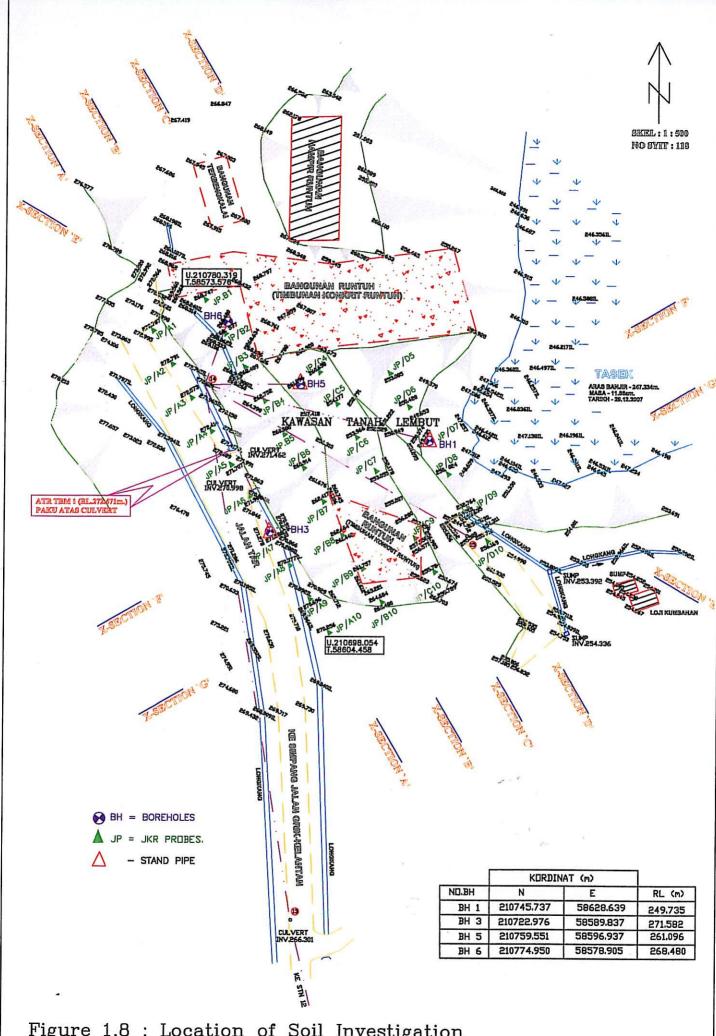


Figure 1.8: Location of Soil Investigation

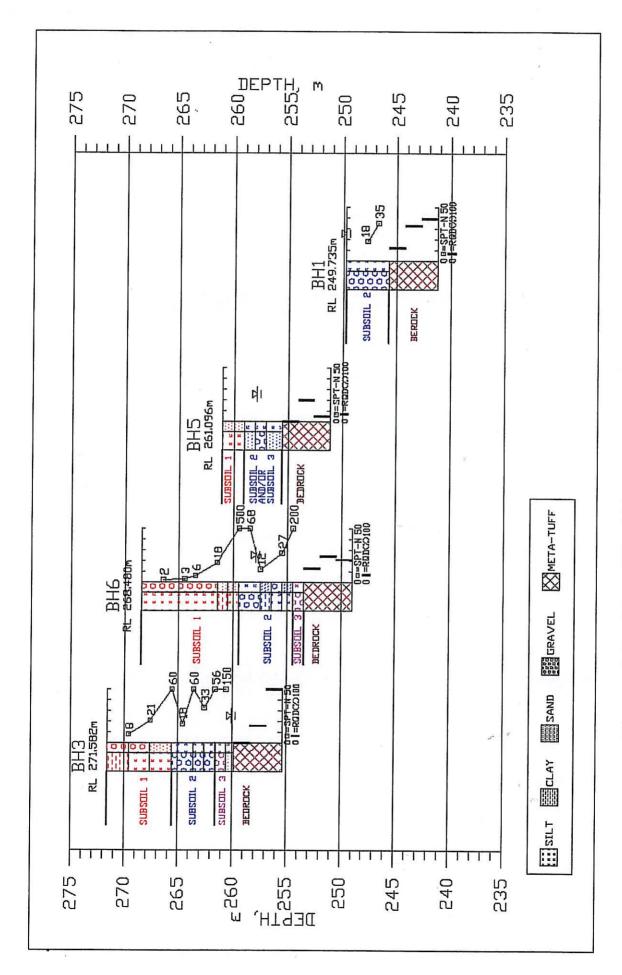


Figure 1.9: Simplified Engineering Borehole Log

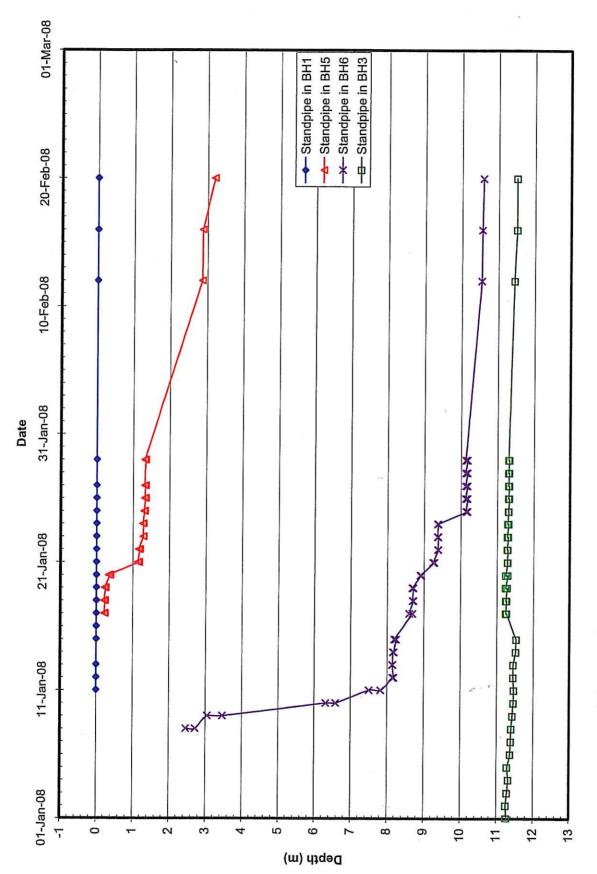
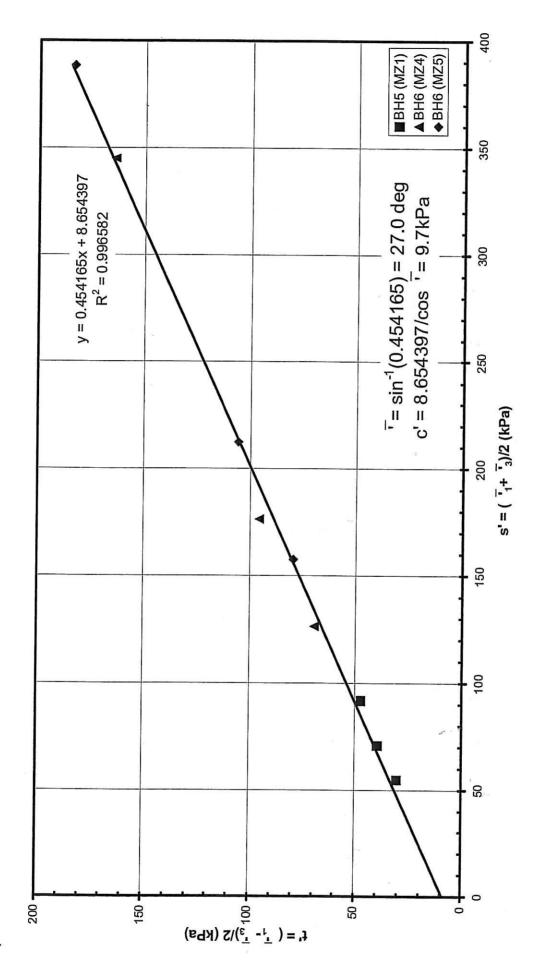
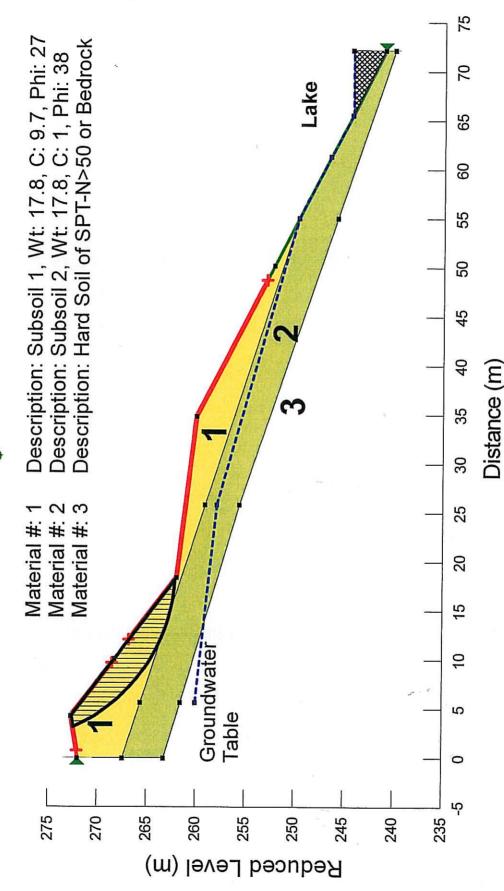


Figure 1.10: Groundwater Monitoring in Standpipes




Figure 1.11: CIU Triaxial Test: s' - t' Plot

·			
, Aka	More	€ 7C5.0£	
24 4.33 □			
岀			
		e e	
/ AMI	wra	S ZSC 978	
11			
1.1			
/ Xabvi laki	2000	(Sa'Cha	
/ //		l.	
/ [/ _m ¹⁶]			
/ 57 - 1	1		
### ##################################	MITE	902'6+2	
/ <u> </u>			
CALLED VIVIANEAN	009'09	Saruaz	
/ 11 - / -			
DATITUD HAVE BEEN KONDOMAS TENT			
CHILLIAO SATA	000.50	821202	
25 June 1500 1500 1500 1500 1500 1500 1500 150	00+'6+	223'122	
* // /			
3		2	
· · · · · · · · · · · · · · · · · · ·			
Selection in the property with	ponec	E44,005	
H. H. L. C.	D33.25	801.185	
/			
THE PROPERTY OF THE PROPERTY O	21,400 21,400	670.643 819.079	
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	004.61	585.179	
RI UBSOIL UBSOIL EPROCK			
dyl. ny tyr ian	000'21	875.175	
TRY L MOTOT EXIL	009%	983.175	2.1
TIMENOR DAY BOARD IN BOARD	6.810	290,075	
DNLLUE) RVÆVE	0000	E SPC BYG	
		ᇻ	
	-	3	
	-	2	
apa	E	ig	
42	<u>ة</u>	<u> </u>	
DATUM 240.00	Distance (m)	Exsiting Ground Level (M)	
<u></u>	a	ũ	

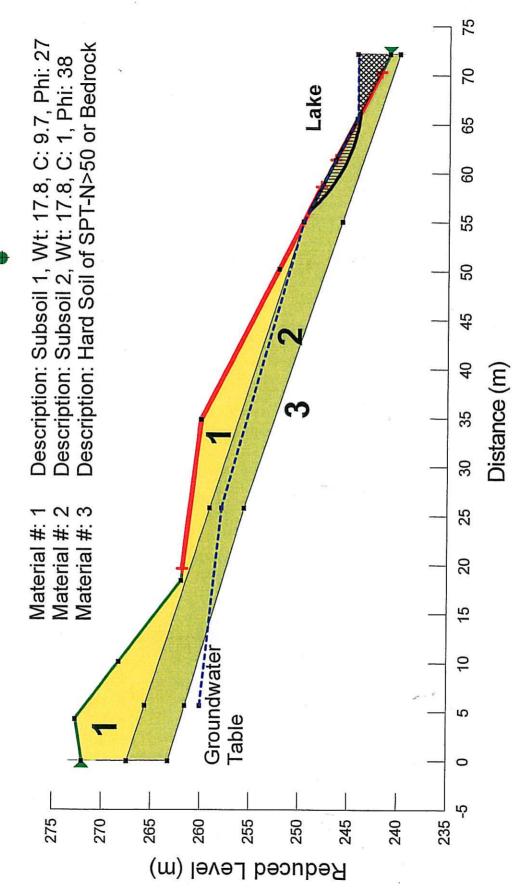
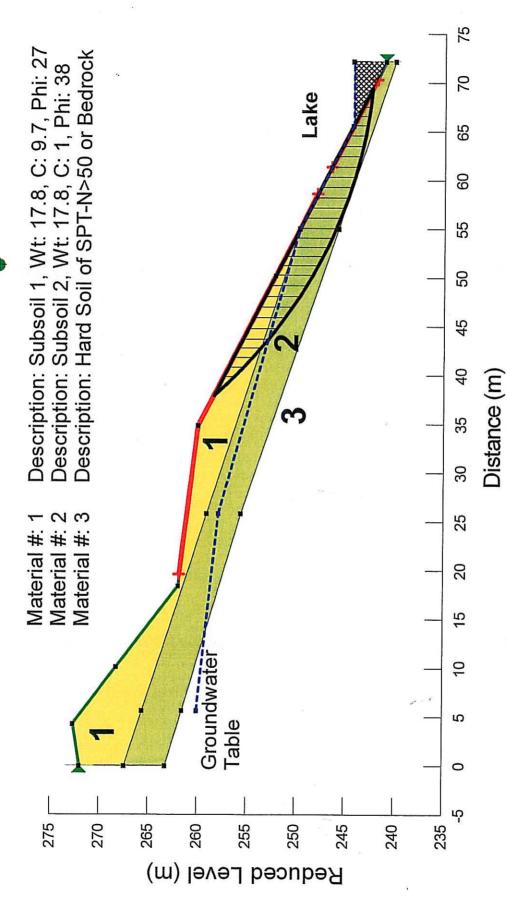

Note: Reproduced from Survey Plan No. ATRPK/1E/1/2008/A1, which was prepared by Abdullah Taha & Rakan Rakan

Figure 1.12: Cross-section F-F



Stability Check for Upper Slope: Factor of Safety = 1.34 (<1.40, Unacceptable) Figure 1.13(a): Stability Analysis of Cross-section CH. 120 Case 1 - Subsoil 1: C' = 9.7kPa, ϕ' = 32.4°; Subsoil 2: C' = 1.0kPa, ϕ' = 38.0°;

Stability Check 1 for Lower Slope: Factor of Safety = 0.74 (<1.00, Failure expected) Figure 1.13(b): Stability Analysis of Cross-section CH. 120 Case 1 - Subsoil 1: C' = 9.7kPa, ϕ' = 32.4°; Subsoil 2: C' = 1.0kPa, ϕ' = 38.0°;

Stability Check 2 for Lower Slope: Factor of Safety = 0.99 (<1.00, Failure expected) Figure 1.13(c): Stability Analysis of Cross-section CH. 120 Case 1 - Subsoil 1: C' = 9.7kPa, ϕ' = 32.4°; Subsoil 2: C' = 1.0kPa, ϕ' = 38.0°;

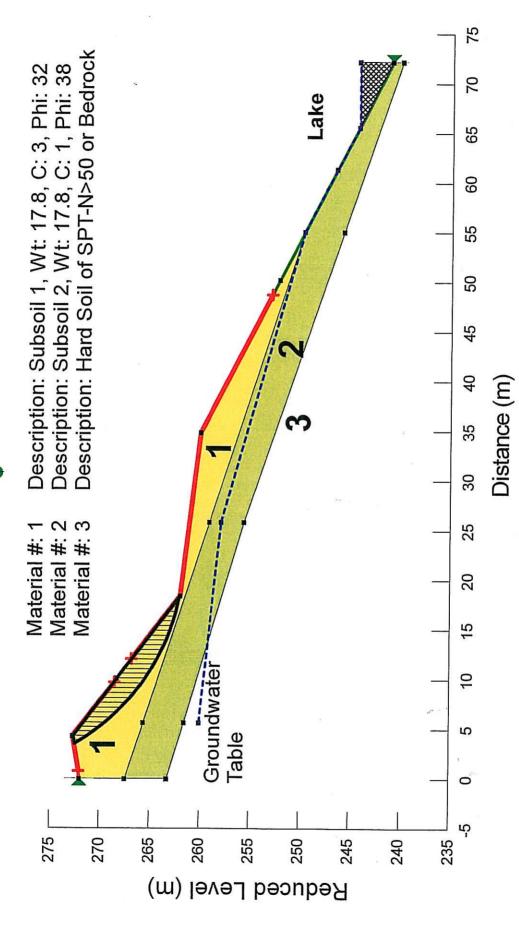
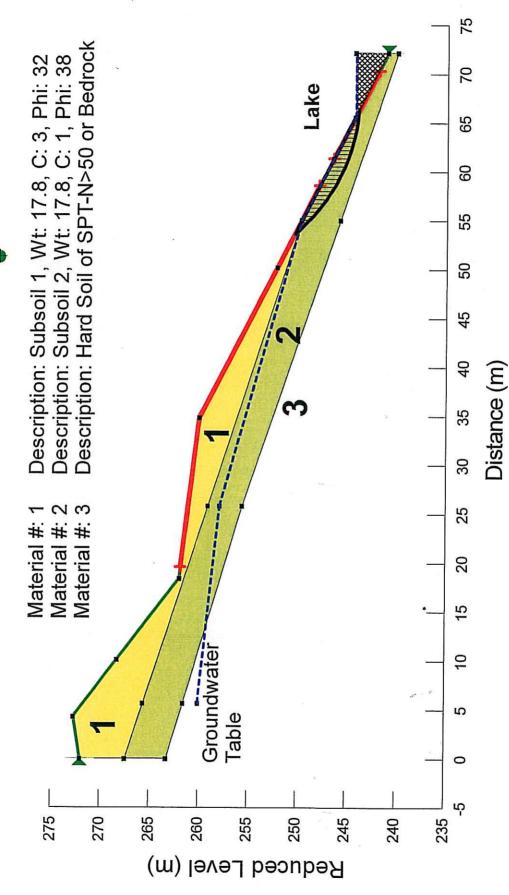
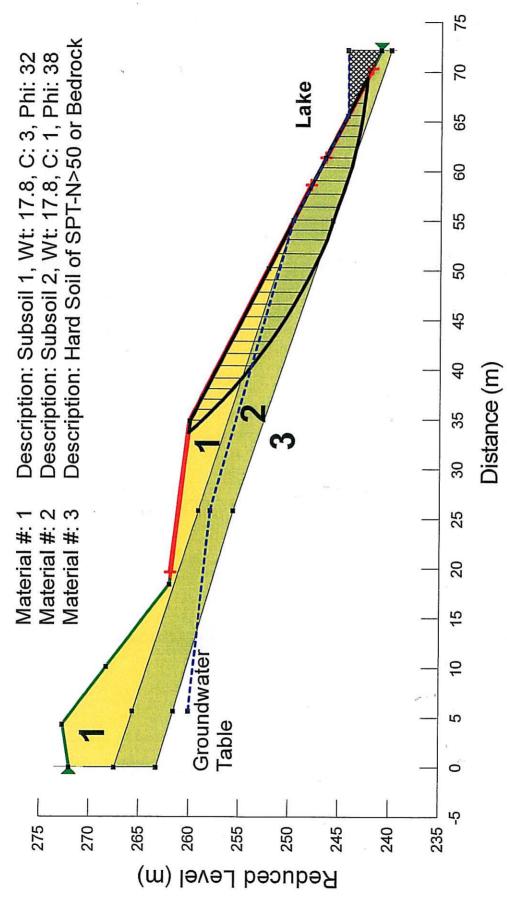
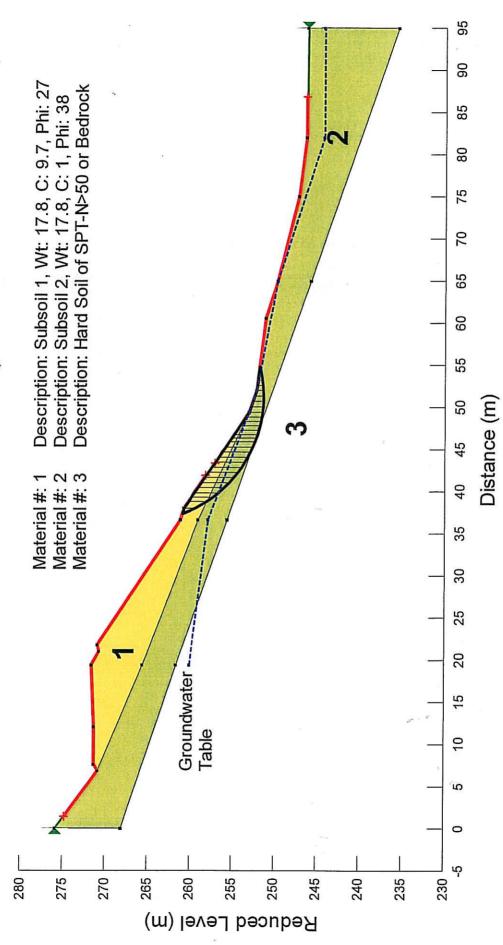
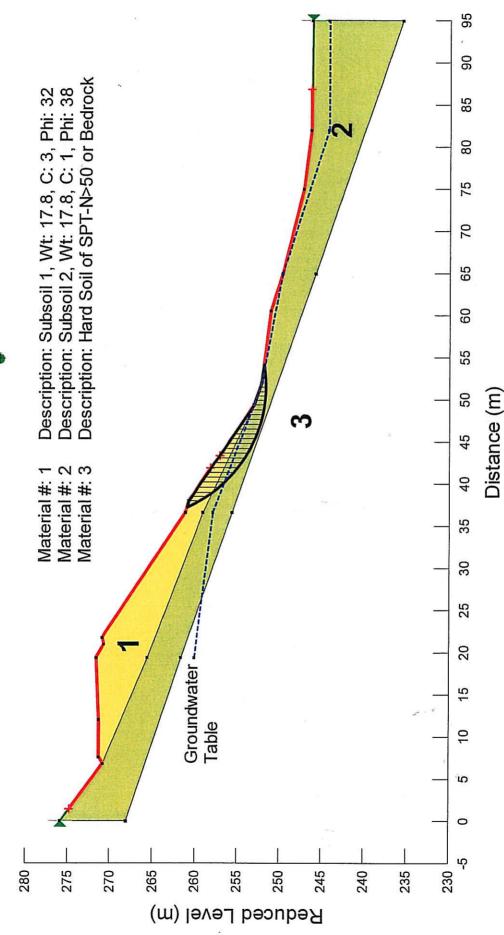




Figure 1.13(d). Stability Analysis of Cross-section CH. 120 Stability Check for Upper Slope: Factor of Safety = 1.15 (<1.40, Unacceptable) Case 2 - Subsoil 1: C' = 3.0kPa, ϕ' = 32.0°; Subsoil 2: C' = 1.0kPa, ϕ' = 38.0°



Stability Check 1 for Lower Slope: Factor of Safety = 0.72 (<1.00, Failure expected) Figure 1.13(e). Stability Analysis of Cross-section CH. 120 Case 2 - Subsoil 1: C' = 3.0kPa, ϕ' = 32.0°; Subsoil 2: C' = 1.0kPa, ϕ' = 38.0°



Stability Check 2 for Lower Slope: Factor of Safety = 0.99 (<1.00, Failure expected) Figure 1.13(f): Stability Analysis of Cross-section CH. 120 Case 2 - Subsoil 1: C' = 3.0kPa, ϕ' = 32.0°; Subsoil 2: C' = 1.0kPa, ϕ' = 38.0°

Case 1 - Subsoil 1: C' = 9.7kPa, \(\psi \) = 32.4°; Subsoil 2: C' = 1.0kPa, \(\psi \) = 38.0° Figure 1.13(g): Stability Analysis of Cross-section F-F Factor of Safety = 1.16 (<1.40, Unacceptable)

Case 2 - Subsoil 1: C' = 3.0kPa, \(\psi \) = 32.0°; Subsoil 2: C' = 1.0kPa, \(\psi \) = 38.0° Figure 1.13(h): Stability Analysis of Cross-section F-F Factor of Safety = 1.12 (<1.40, Unacceptable)

.1

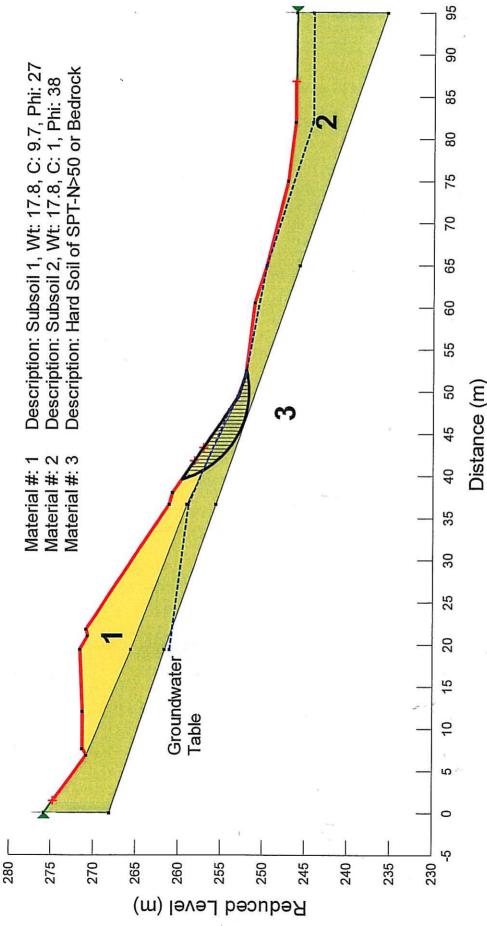


Figure 1.13(i): Stability Analysis of Cross-section F-F if Groundwater Level Rises for 1m Case 1 - Subsoil 1: C' = 9.7kPa, ϕ ' = 27.0°; Subsoil 2: C' = 1.0kPa, ϕ ' = 38.0° Factor of Safety = 0.97 (<1.00, Failure expected)

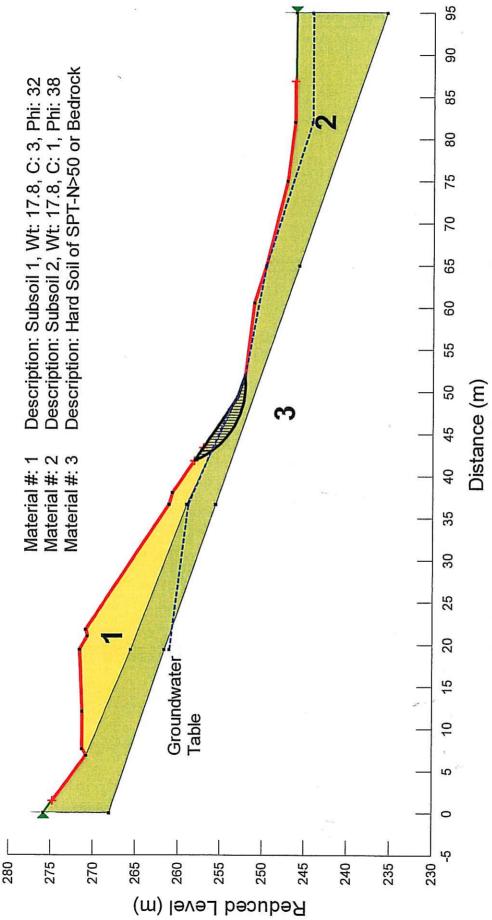


Figure 1.13(j): Stability Analysis of Cross-section F-F if Groundwater Level Rises for 1m Case 2 - Subsoil 1: C' = 9.7kPa, ϕ ' = 27.0°; Subsoil 2: C' = 1.0kPa, ϕ ' = 38.0° Factor of Safety = 0.91 (<1.00, Failure expected)

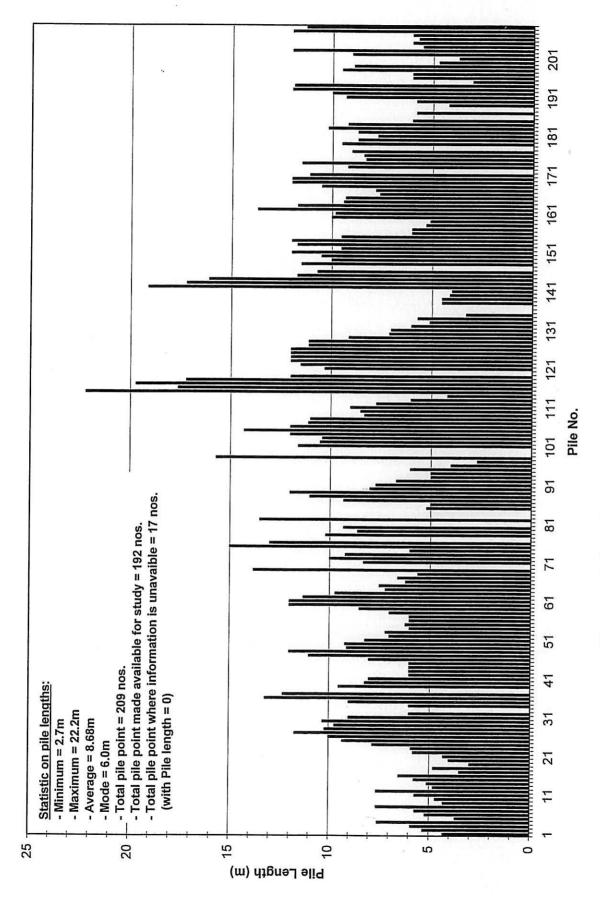


Figure 1.14: Summary of Pile Lengths

APPENDICES

PARAS AIR TASEK TEMENGGOR

Septe	mber-07
1/9/2007	244.33
2/9/2007	244.29
3/9/2007	244.28
4/9/2007	244.19
5/9/2007	244.12
6/9/2007	244.02
7/9/2007	243.94
8/9/2007	243.96
9/9/2007	243.89
10/9/2007	243.88
11/9/2007	243.76
12/9/2007	243.67
13/9/2007	243.58
14/9/2007	243.51
15/9/2007	243.44
16/9/2007	243.34
17/9/2007	243.29
18/9/2007	243.19
19/9/2007	243.08
20/9/2007	242.96
21/9/2007	242.84
22/9/2007	242.74
23/9/2007	242.64
24/9/2007	242.54
25/9/2007	242.44
26/9/2007	242.35
27/9/2007	242.23
28/9/2007	242.11
29/9/2007	241.99
30/9/2007	241.85

OKT	OBER 2007
1/10/2007	241.81
2/10/2007	241.72
3/10/2007	241.62
4/10/2007	241.49
5/10/2007	241.36
6/10/2007	241.42
7/10/2007	241.48
8/10/2007	241.37
9/10/2007	241.14
10/10/2007	241.02
11/10/2007	240.95
12/10/2007	240.85
13/10/2007	240.76
14/10/2007	240.77
15/10/2007	240.80
16/10/2007	240.77
17/10/2007	240.74
18/10/2007	240.67
19/10/2007	240.61
20/10/2007	240.57
21/10/2007	240.50
22/10/2007	240.45
23/10/2007	240.42
24/10/2007	240.38
25/10/2007	240.31
26/10/2007	240.25
27/10/2007	240.18
28/10/2007	240.13
29/10/2007	240.07
30/10/2007	240.11
31/10/2007	240.07

Nove	mber-07
1/11/2007	240.03
2/11/2007	240.03
3/11/2007	240.06
4/112007	240.11
5/11/2007	240.12
6/11/2007	240.10
7/11/2007	240.17
8/11/2007	240.16
9/11/2007	240.14
10/11/2007	240.12
11/11/2007	240.10
12/11/2007	240.11
13/11/2007	240.15
14/11/2007	240.20
15/11/2007	240.25
16/11/2007	240.28
17/11/2007	240.31
18/11/2007	240.33
19/11/2007	240.39
20/11/2007	240.45
21/11/2007	240.55
22/11/2007	240.60
23/11/2007	240.64
24/11/2007	240.66
25/11/2007	240.68
26/11/2007	240.70
27/11/2007	240.70
28/11/2007	240.71
29/11/2007	240.68
30/11/2007	240.67

Table 1.1: Paras air Tasek Temenggor bagi Bulan September, Oktober dan November pada jam 8.00pg

(Bahan Rujukan dari TNB Gerik)

TABLE 1.9 CALCULATIONS OF PILE CAPACITY

	Set I		1		K*-	d L	t m							Pro	ojec	t Titl	e:					n (cross						Jo	b No	ο.			
				A1.0	111.4	ימדו	1011	ECT						Se	rial .	Na.			Y		100			- 1981	ga to	- 0		SI	heet	No.	17-1		H
lculatio	n Titl	e:	C)	MLU	ULF	ATION	OH	ce I	11-25					De	sigi	,			Ch	eck			F	evie	17			Da	ate	-	-		
Evalu: (Pile	ation Leng	of l	Pile 2.	Ca 7m,	pac Pil	ity us	sing min	Me	yerl at	hof SP	Equ r-N:	atio	on)			cs	Н				LCS	3			G5	S				12-	Ma	r-08	
REF													CA	ĻCU	LA'	ПОУ	IS				- 181									0	UTP	UT	
H		-	Eu		2416	n of	DII	200	1	altre	-	-	-	-		-	-	L	_	L		-	-	+	-	+	+	L	1	-		100	
\vdash		-	LV	aju	1110	1	T	1	Ja	I	+		上			\vdash			L		H		+	+	+	╁	+	╁	╁	┢			_
																	L							+	+	†		1		T			
	-			14			1	-			L	L						s	OIL								1						
-015		-	T)			R. C		rivo	Di		\vdash	-				T	ΙTc)s					+	+	-	+	-	H	H	-			
				H	-	n. C	, D	IIVe	1171	T	+	H				The same							+	+	+	H	+	\vdash	+	-		+	
				Y			I		I							4	Q _b																
4	+									_	L		느							=						L							
			a) :	SIR	ICT	ural (Cap	acıı	y o	TPI	ie (Wo	rkin	gc	one	inte	on)	H	H			-	+	+	+	1	+	-	\vdash			-	
			1	Siz	9	-	2	50x	250	m	-		\vdash		in the								0		-	-							
				Sha	ape	-		S	77	(C	- 0	IR	CLE	, S	- 5	SQL	JAF	E)												100			
-		_	-					_	1			-			2	L							1	+				L					
+	+		$\overline{}$	_	_	secti eter c			-	_	-	_	.000		m" m	-							+	+	+	\vdash	+	-	-		-	+	
					1111	3161	T	T	T	1	F	i i	1		111							+	+	+	1	H	H					+	
							1																										
+	+		-	Stru	uctu	ıral c	apa	city	of p	elic	und	16	vori	ing	CO	ndit	ion	-		_		750	1	_	kN	1	L		L			-	
			b) (Geo	tec	hnle	al (Cap	aclt	y o	PI	e		Q ₂	1 =	(B ₁	NA	.)/F	1 +	(B	NA	b)/F2	+	+	\vdash	┝	-	H	_			+	-
			İ									A							Ī					+	-		\vdash					1	7
					_	Fact					III The sec	-				=	1	_															
-	H		+	-	-	Fact	OI 0	rsa	lely	(EI	id E	ea	ring.	,F ₂		=	3	.0	-		-		+	-	-	L	-					1	
	\Box						t				87													+					-			+	
				DÉ	PT	H		D _b	SP	TIN	E		Tota	al S	kin	E	2	Tot	al E	nd	Tot	al Q	t Al	lowa	ble	O _a							
-		-			Tax .					550			700000	ictio			100	271.000	arir	-							L					1	
	\vdash	\dashv	0	_	m).	2.7	_	m)	2	0	1	3		KN)	_	THE .	400	_	(N)	_	_	(N) 2.00	F 682		(N) 8.00	asy						+	_
8 4			2.7	_	_	vards	-		-	0			_	2.0	_	40	00		0.0	-	-	2.00	_	-	3.00	_					1	1	
	П				181	W.	L							Mi								ME			Å!			Œ.					
-	Н	-		+			-		-			_			-					+			+		H			11			_	+	
	H			+	-		-		-		188			2000						1			+	1	-	1.1	H			-2-5-2			-
	- 3				707					90)	9											70											
-	H	-		4			-				700				4		-			1			-		, if								1
+		-		+			-				. 4		Silvi	-	-		-	+		+			-				H	5		-	-	-	-
				1		nije.		21	7											1			-				H		-				1
9				1		W.C.		Te le	181			4.										05						40			1		
	H	+		+			-		*110	-			4		4		-	HILL		-			+				Н			4	-		4
			Т	+	T			10/4					T		+	T	1	T	T	+	Т	T	+				H			+	+	+	+
	口				8	1/1/11		11	10										1	+								*		1	1	1	+
-		1	8	Stru	ctu	ral ca	pac					ing	loa	1	1	>		Geo				llow	able	cap	aci	у	П						1
-	H		+	+	+	315		75	50,0	0	kN	-	-	-	+	-	+		35	8.0) k	N	-				-	-			1	-	-
	\vdash	1		+					110	1	-1		+	+		+	1	1	+	+	+		-	\vdash			H	-	-		+	+	+
				1																												1	1
+	\vdash		1	-	-		1-11	Ц		_	4	-	-		4	1	1	1	1		\bot	\bot	F										1
-	\vdash	+	+	+	+	W2420		H	-	-	+	\dashv	+	+	+	+	+	+	+	+	+	-	-			-	-	-	-	+	+	+	1

Project Title: Job No. Serial No. Sheet No. CALCULATION SHEET Design Date Review Evaluation of Pile Capacity using Meyerhof Equation (Pile Length = 2.7m, Pile terminates at SPT-N=50) LCS GSS 12-Mar-08 CALCULATIONS OUTPUT Evaluation of Pile Capacity SOIL Qs Type = R. C. Driven Pile BH -# C a) Structural Capacity of Pile (Working condition) Size 250x250 m Shape = (C = CIRCLE, S = SQUARE) Cross sectional area,Ab -0.0625 m² Perimeter of the pile, As = 1.0000 m Structural capacity of pile under working condition = kN b) Geotechnical Capacity of Pile $Q_{all} = (B_1NA_2)/F_1 + (B_2NA_b)/F_2$ Factor of safety (Skin Friction),F = 1.5 Factor of safety (End Bearing),F2 3.0 DEPTH Db SPT'N Bi Total Skin Total End Total Qui Allowable Qu B₂ Bearing Friction (m) (m) (kN) (kN) (kN) (kN) 0 2.7 20 162.00 0.00 162.00 108.00 2.7 2.7 50 162.00 1250.00 1412.00 524.67 Structural capacity under working load Geotechnical allowable capacity 750.00 kN 524.67 kN

	11 11	77			W.							9		10.00	149	Pi	ojec	t Tit	le:	7						- 40					lob i	Va.	W.			
					41 ~		A T-1-		\.							Se	erial .	No				-					-				Shee	ı No				_
cula	tion	Title	2	C	ALC	UL	ATIC	an S	HE	ET						De	esigi	7			Ch	eck				Rev	iew	-		- 1	Date		_		-	_
							city (cs	Н				LC	S				iss					2-M	ar-0	8	
R	EF.														CA	LCI	JLA.	TION	NS	_	_							_	_	\exists			OUT	PUT		_
100				Ev	2111	211	on c	V E	llo	C	na	- Itu	\vdash	-	-	-	-	-	+	+	┡	-	_	H				-		+		-	+	+	-	-
					alu	I	T		116		Ja	I	+	t	上	L	L	L		L	L		\vdash					1		+		+	+	+	+	-
1.1				H					7						_							_			1						1			T		
					_	L	_			_	L	_	1	-						5	OIL							_	4		1		1		_	
				Tv	L no	-	R.	C	Dri	vor	Pi	10	\vdash	\vdash				П		٦s			-				+	+	-	+	+	+	+	+	+	
					Н	=	_	<u>.</u>	Dii	Vei			+														+	1			+	+	+	+	+	
								13										1	l C	b		i	18										土			
		- 1													_		Ι	·	_	_		F							_			1		1	1	
		-	_	a):	Sin	uct	ura	G	apa	CIT	y o	PI	le (wo	rkir	ng c	ion	an	on)	+	-	H	-	Н		Н	4	+	+	-	+	+	+	+	╀	
					Siz	9	-		25	0x2	250	m			+	-	+	1	-	+		100			W	H	\dashv	+	+	+	+	+	-	-	+	1
	U.					аре	-			S			_	IR	CLE	. 5	3 - 3	sal	UAI	RE)		911			ľ						1	1	1			
	111											Ļ	L		\prod					F							\Box	I	I	T	T	T	T	F		1
	\vdash	-		_	_	_	sec eter				-	_	=	-	00.0	25 00	m² m	-	-	-	-	-			18.		+	+	-	-	-	+	+	+	-	4
	<u> </u>		5)		re	I III	eter	01	016	IKI :	e, /	15	-	-	T	T	in	-	-	+					_		+	+	+	-	+	+	+	+	1	1
	5								U.																_		1	7	1		+		T		T	1
		\Box			Str	uct	ural	ca	pac	ity	of p	ile	unc	10	wor	king	co	ndi	tion	-				750			I	άN			T		I			
-		-		b) (COL	210	chn	loa	1.0	and	l cit		DI	10	-			/D	.NA	1/1	_	<u> </u>	NIA	ь)/F	_		4	+	4	- -	4	-	\perp	L		4
				,,,,	Get	Jie		I		ape	l	y			-	-	71	10	1147	18//	1 +	(0)	147	ъ, г	2		+	+	+	+	+	+	+	+	-	$\frac{1}{2}$
		T					Fa	cto	rof	sai	ety	(SI	(in	ric	tior),F	_	=	1	.5							+	+	1	+	T	+	+	t	1	1
	200				10		Fa	cto	r of	sa	ety	(Eı	ıd E	Bea	ring),F;		=	3	3.0							3						T			
	_	-										15			_		-	-	-	-				_			4	+	4	+	+	1	+			1
		+	1	(50)	DE	PT	H			h-	SP	T'N	E		Tol	al S	kin		3,	To	al E	nd	To	tal C	2. 1	Allo	wab	le C	2.3	+	+	+	+	+	-	+
					n s		100				82				1904	ricti	CO-ONLY	100		Diam'r.	ari	100			50				ii.			+	+	T	T	1
					_	m)	_	34	(n	_	100				_	(kN	_			_	(kN	-	_	kN)	_	8	(kN)								1
	_	-	-	0	-	_	8.7		8.	7	_	0	- :	3	_	22.	_		00	-	0.00	_	_	22.0	_	_	348.		1	1	+	-	+	1	L	1
\dashv	-	+	\dashv	8.	4	OIT	war	ds	_	-	3	0	-	-	-	22.	00	4	00	1	50.0	Ю	12	72.0	10	- :	98.	00	+	+	+	+	+	+		1
\exists		1	1			2		1																			_	_	+	+	+	+	+		-	t
															FAM								37-1			17			I		I					İ
	-	1	-		_			1						4	_			_		-		_			_				1		1	1	1			1
14		+	+		\dashv			+	+		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-				100	-		-	1	\dashv		-	-				+	+	+	-	+	-	-	+
			1			T		+		10	4						100		7 1						1				1	+	+	+	+	1	\vdash	1
														No.			- 5	17	Ť.				la.							1			T			İ
4	4	4						1													N.				_			446	1	1	L	Į	Ŧ	L		ļ
-	+	-	+		+			+	_	-				1 14	-					-		-		-39	-				+	+	+	+	+	H		1
	\dashv	+	+		1	e il		+		V.	75				121								VI	771	-			-	+	+	+	+	+			t
											7	JK.				(E)		UV.				X						T								t
1	\perp	1	1		\Box			1							Ļ			4	7		\Box			I	I	Ι		I	-		L	L	L			ſ
+	-	+	+	-	Strt	ıctı	ıral	cap	Dac		und		vorl kN		loa	d	-	>	_	Ge		:hni:			val	ole c	apa	city	-	-	-	-	+			+
+	+	1	+	1	+			+		7	10,0	,,,	NIN								25	78.0	U	KIN	-	+	+	+	+		+		+	-	-	ł
			1		1		1		1													1		1		1	1	1	1	+			+	1		t
				1																													I	71		ľ
-	4	4	4	4	4			4	4	4										H	4			4	4	4	1	1	1	-		1	+			ļ
_	+	+	+	+	+	-	-	+	+	-		-	_	9			_		_	_	-	-	+	+	-	+	+	+	+	+	+	+	+	H		H
																	- 1																			1

					-					-116-				Pr	ojec	t Tit	le:					1	TE				-	_	Jo	bΝ	2				-
														Se	nial .	No.	989111	-								-	7		Si	heet	No.				
0.7		***		C	ALC	ULA	TION	SHE	ET						0.000				Tai												1				
	ulatio valua			Pile	Ca	pac	ity usi	ing N	Иeу	erhot	Equ	ıatio	on	De	sigr				Ci	heck				He	vier		_		Di	ate			•		
	Pile	Len	gth	= 8.	7m,	Pile	e tern	ninat	es	at SP	F-N	- 50)	L		cs					LC	5			3	GS	S				12	-Ma	r-08		
	REF.	-	+	T				П		П	Т	Т	CA	LCL	JLA [*]	TON	VS.	T	1	_	Т	1	_	Т	Ť	Т	Г	T	+	_	T	UTP	UT	_	
				Ev	aju	atlo	n of	Pile	Ca	pacity		T		İ		t		t			T	t								-					
H	-	-	-				File						┢		_	<u> </u>		_	_	1_	L		-	-	_	_	L		1		1			8	
H			H		- 103	111		H			+	+	lТ		Ť		_		SOII		H	H	ı		\vdash	-	H		+		+				
П			L								1					1	1	کړ	3011			L							T		11				
H			-	_	pe H		R.C.	Driv	ven	Pile	+	H	1				`	4 5			H	H		+	-	771	-	-	H	+	+	+		-	
I			3				110				I					1	0	b				L						L	L						
H	+	-		a) :	Str	ıctı	ıral C	ana	city	y of Pi	le (Wo	rkin	a c	one	dhi	on)	F	F	F	-	V To	-		-		H	+	╀	+	H	-		+	
									F		Ľ	Ï	Γ	-	Ī	Γ	T		1															1	
H			12	H	Siz	e ape		25	0x2	50 m		TIP	CLE			501	IIA	JE,		-			1	H	F		F	F	F	F	F	F		\dashv	
H	1	†			311	the.			3		Ī	Τ		T			L] [\vdash					-		11.11	1		-			<u> </u>		7	
H		F		_	_		section		_		-	_	0,06		-	_	-	F						-	L		L		1		1-		14		
\vdash	+	\dagger	-	\vdash	Pel	ime	eter o	tne	DII	e, As	-		.00	10	m		+	+	+			H	t				\vdash	+	-	+	t			+	\dashv
										\$11.50		76						L					T												
\vdash	+	+	H	Н	SIn	uctu	iral ca	pac	ity	of pile	unc	der	worl	king	CO	ndi	tion	Ť	+	T	Г	75	0	Г	Г	kh		+	+	-	H	\vdash		+	-
				b) (Ged	tec	hnle	al Ca	apa	city o	f P	le		Q	u =	(B	1NA	\ _a)/	1 +	- (B	2N/	А _b)/	F ₂												
\vdash	+	H		H			Facto	or of	saf	ety (S	kin	Fric	tion).F.	_	=	1	1.5	-	-	-	+	-	-	H		H	-	+	-	H	-		+	
口										ety (E						=	-	3.0							1										
\vdash	+			H							-	H	RE .			1		-	-	-			-					-		H				_	_
					DE	PT	H	D	b.	SPT'N		B ₁	Tot	al S	kin		32	To	tal E	End	To	otal	Qui	All	DW E	ble	Q,			\dagger					
	+	-									100		-	icti	0.000	100 100 100		200	aar	-		(III)	356	200	n.	R IV		L		L					
\vdash				C		m).	3.7	(m	_	20	25	3	_	(kN 22.0	_	100		_	(kN 0.0	_	_	(k)		980	_	N))	+	\vdash	\vdash		\vdash	+	5	\dashv
H			100	8.	7	onv	vards			50			5	22.0	00	4	00	12	250	.00	17	772	.00		764	.67		L							
H					-		_				-							-			H						_	\vdash	\vdash	\vdash	-	- 1		+	\exists
口			103			1		TN.	W.			ij					9-17			1					W.							33%			
H	+	\vdash			-				+		-		-	-		-	-	-			-			-				-	-	-			-		\dashv
										27/12				4					U.																
1	+	-					u Sa	-	4									-	_				-		10			H			-		-	-	-
\forall							14.5			KIL.		Į.																							1
H			180		1	7):		3.73	1												2					7		F	19	E					1
\vdash	+	H	_						1	1900			-			1		+			-		71					+	-	-		H	-	+	-
		L								24		M				8							Ε	- 1								П			
\vdash		-			Stru	ıctu	ral ca	paci	ity ı	under	vor	kino	loa	d		<		Ge	ote	L_chni	ical	all	owa	ble	can	aci	ly		-	Y		H	-	+	-
	UA.		100								kΝ				b					64.6							Ĺ					Ē			
	+				-	-		+	-	-		-		73			81	-		-			H				-		-					+	-
					1																													1	
	+			\dashv	4	4			1		L	L											E					F		Ä	100		_	-	4
H					1				+	\pm																		-		H		H	+	+	-
	T				7				7					-				Г			-											П		\top	٦

. .,

																	P	ojec	t Titi	ie.												Jo.	bΝα	1				
					10	241	CI	1 A.	TION	c	ıcr.	-					S	erial .	No.						72.7							Sh	eet	No.		1111	+	
a'c	ulai	tion	Titi	e:		JAL.	UU	LA	TION	ar	TEE					-	D.	esigi	7			Ch	eck		-		Re	view				Da	ite	_			-	_
E (I	val Pile	ual Le	ior eng	of th	Pil 2	e C 2.21	apa m,	aci Pil	ty us e ter	ini mi	g M nate	eye	rhol	Eq PT-	uati N=3	on O)			cs	Н				LC	s				GS	s				12	-Ma	ır-0	8	
_	RE	F.		I	_	_	_			_			_		Ţ	C	ALCI	JLA	TION	4S		_	_									L		0	UTF	νUΤ	ā ,	-
+	-	_		H	-		1	10	n of		10.0	_	201	+	+	+	+	\perp	-	+	╀	_	L	-	1	Ļ			_	_		L	-	1	1	_		_
+	+	_		H	=	Vall	Uat	10	101	F	e	aD	acit	*	+	L		\vdash	\vdash	+	+	\vdash	E	-	\vdash	+	H					H	-	⊢	╁	┝	-	-
İ							1	1		1		1		1		1_				L				H		-				H		-	T	T	t	H	H	-
1				L	1		1	4		1		1		1]					8	OIL																
+	+			H	+		+		R. C		Nais and		211-	+	+	-			T	I_{c})s			L	-	_						L	-	L	-	L		-
t	1			+	-	BH	-	-	H. C	. L	JIIVE	en i	-lie	+	+	1			-		-3			-		-	-			-	-	-	-	+	+			-
I					I	T	İ		li de la	T	7	I		T		1			4	ļ Q															\vdash			
1					L		1			1		1				上	_	_		-	_																	
+	+			-	a)	St	T	Tu	ral (jaj	pac	T	Of F	110	(WC	TKI	ng c	on	aitk	on)	-	-	-	-	-	-	-	H		-	-	-	-	-	+	\vdash		-
t	1			1	1	S	ze	1	_	2	250	25	0 n	1	1	+			-	-	-			-		1		-	-	-	-	-	-	-	+	-	-	-
I			N			-	har	-		1		3	((3 -	CIF	CL	Ε, 8	3 = 5	sal	ÚAF	RE)																	
1	4		T		L	1	L			L	1	1	1	1				L.		L																		
H	+			-	+	_	_		secti ter o	_				+		_	325 300	m'	_	-	-	-	-	-		-	-					-	1 12		-	-	-	
1	1					1	T	1	101 C	T	19 1	T	7	f	1	1		711		-	-						-							H	+			1
							I				T	I	1			I																						
L	1			-		St	ruc	tu	ral c	ap	acit	y 01	pile	un	der	WO	rking	j co	ndit	tion	-				750)			kΝ						L			1
┞	+	-		H	þ١	Ge	lote	ec	hnic	al	Car	nac	liv .	of P	lle	+	0.	71 =	(B.	NA	1 /F	. +	(P	NΔ	1/1	-						-	-	H	\vdash	-		1
	†				<u> </u>	Ī	Ī	T		T		T	T	T		-			-	Ī	1		,_,		-6/	-					7.5				-			1
							I		act										=	_	.5		1		100			177										1
H	+		-	-		+	+	4	Facto	or (015	are	ly (E	:na	Pes	Irin	g),F;	-	=	3	.0		~					7	-							_		
-	+					+	+	+		†	+	\dagger	+	+	+	+	+	-		-															-		-	1
					3000	D	ĒΡ	Tŀ	L	8	Db	S	P,T'I	V	B ₁	To	tal S	kin	i E	32				To	tal	Out	Allo	wal	ole	Oal								1
H	+	_	_		開放		7	1			75.3					F	ricti	-			120.00	arii	40.00															1
-	+	+			100	0	(m		2.2	-	(m) 22.2		20	i ii	3	1	(kN 332	-	200	PEUR:	_	kN)	-	_	KN 32.	_	150	(kl 888	-		\dashv							1
					_	_	0		ards	-			30	1	_	-	332	-	40	00	_	50.0	_		82.	_	-	138	_	_					H		-	1
								7				I		I		L						W			H)	1	17							1				
H	+	-	-		_		╀			H		+		+		\vdash			9/2	9/8	-		-	_	_			_										I
	1	+		Н			1			-	A S	+		+	30	+				71	-		-								-	-			H			1
	Ţ				No.							T		T	7		W.	314		ÛŊ					ÿ.													f
_	+				-1		-	195	99	L		1		+		1																						ſ
	+	+	8	10	-		-	-		1		+		-		-		-		-	7.		-			-		-	-	-	\dashv	-		-	H	127		1
T.	1				12	77	-	Ġ	Y A	1	919	1		T					110		ZA.									-				5			E)	1
						i.			-		96	T		L							12.0			UE.	M									TI.				t
1	+	4					-	1		1		+		1		-							4			-					_							ĺ
	+	+	-				-	T		-	T	+	T	-					1	-		1	-	7		-		T	7	-	-		-		\vdash	_		1
								1																1					1	8	-		1					ŀ
	T	I	_	-		Str	uc	tur	al ca	pa						lo	ad		<		Ged					wal	de c	apa	city	<u>/</u>	\Box							I
	+						-	+			17	50 T	.00	k١	4		H		-			113	38.0	00	kΝ	-	-	4	4		-	_			\dashv	-		-
	+		1					+	100.00	-	+	1	-	+	\vdash		H		-			+	+	-		+	+	+	+	-	+		-	-	\dashv	-	-	1
	I																												1				1					ŀ
	-	1	1				L	1			-	L									\Box	1	1	J		1	T	1	1	\Box	\Box			\Box		\Box		F
	+	+	-				-	+		-	-	1	+	+		_	H		-	\dashv	-		+	+	-	4	4	-	+	-	1				4	4		-
			- 1												1			- 1	- 1	- 1	- 1			- 1	- 1	- 1	- 1								- 1	- 1	- 1	

	100	W.		h	-			4.0					T	F	тоје	ct Ti	lle:			e state	- 3000								Job	No.				
				:414:	CLII	ATION	N SL	JEE7						s	eria	Na					1744	9		4		-	2 10.0		She	et N	o.			
culat	tion T	tle:		JAL	JUL	AIN	101	·CE					_	D	esig	ın			C	heci	ŕ			Re	view	-		-	Date	9		_		-
Evalı (Pile	uatio Len	n oi gth	Pile - 2	e Ca 2.2r	apa n, P	city u 'iļe te	sing rml	g Me nate	eyer is al	hof SF	Eq 1-T	uat V=5	ion 50)			CS	H				LC	cs			(389	3				12-1	vlar-	80	
RE	F.	T					_	_	_	_	_	_	C	ALC	ULA	ПО	NS			_	_		_								ΟU	TPU	T	-
-	+	╁	F	Jali	tatle	on of	I PI	le C	ana	cin	+	+	+	+	+	+	+	+	+	+	+	+	+	-			_		-	-	4		1	
	6	T		T	T		Τ		1	T	+	+	士	士	土	t	1	1	1	土	+	+	+	\vdash	H			\dashv	-	1	+	+	+	_
-0		T					T]_			4	100				L										I	1	+	_
+		+	+	+	+	-	+		+	+	+	+	-						sol	L	-	+	-			_		4	4	_	\perp	\perp	1	
1		+	T	ype	-	R. C). D	rive	n P	le	+	+				11		Qs			H	+	+			\dashv	-	\dashv	+	+	+	+	+	-
			_	зн	_					Ι		T	1			-1						+				7	┪	1	+	1	+	+	+	
+	+	+	-	-	-		+		1		-	-	-			1	r o	Ъ					1									丁		
+	+	+	a)	Str	uct	ural (Car	naci	lv o	I P	lle (W	rki	na d	COD	dH.	on	T	T	F	+	+	-			-	-	-	-	+	+	+	-	_
		1	1	Ï	Ï		Ţ		Í	Ė	Ť	T	T	, s.	T	T	T	+	+	+	+	+				+		1	-	+	+	+	+	_
		T		Si	_	-	2	250x		-	_	I						1		in	I				M			7		1		+		
+	+	+	+	Sh	ape	-	+	S	_	(C	- 1	CIF	CL	E . 8	3 =	SQ	UA	RE)	-	+	1		L				4	4		1	1	I	T	
+	+	+	1	Cr	055	secti	iona	al ar	ea.	b	-	1	0.06	25	m	2	-	+	+	+	+	-	-	H		+	\dashv	+	+	+	+	+	+	_
						eter c		_		_	-	_	_	000	+	_				T		1			1	1	+	\forall	+	+	+	+	+	_
4	+	L	-		1		1		F		F	F	F	F	F		F	F												1	丰	1	T	
+	+	+	+	Str	Lich	ural c	L P	acitu	of	ilo	L	L	1	leine	1.00	ndi	lion			_	L	751			4		-	-	1	+	+	+	1	_
+		T	1	Ju	L		T	T	I	Jile	I	T	T	King	T	T	IOI	T	+	T		750			+	kN	+	+	+	+	+	+	+	-
			b)	Ge	otec	hnlo	al (Cap	acit	y o	f Pl	le	I	Q,	4l =	(B	N/	\ _s)/	-1 -	- (B	2N/	۱ _b)/	F ₂			+				1	1		+	-
+	-	-	-	_		Fact		100	fot	10	din	Eric		1		L		_	_						di l	1		\Box			I			
t	-	+		-		Fact										=	_	3.0	┝	\vdash	-			-		+	+	+	+	+	+	+	+	
			15				Τ	П	Ė	Ė		Π	Τ	T				T							1	+	1	+	Ť	+	+	+	+	
+		L	2040	-					20	-		L																			土			
+		-	370	Ut	PT			D _b	SP	IN		3,	1	tal S ricti	46.00		32			nd ing	To	otal	Out	Allo	wab	le C	al			+	+	+	1	
t		F			(m)		1	m)					-	(kN	-	100		_	(kN	-		(kN			(kN			+	+	t	+	+	+	
Ţ			_)	_	2.2		2.2	_	0		3	1:	332.	00		370		0.0	0	13	332.	00	_	88.	-		1	T	T	\pm	+	+	1
+	+	-	22	.2	onv	vards	-		5	0			13	332.	00	40	00	12	250.	.00	25	82.	00	1	304	67					I			
-	+						\vdash		-	-	H	H	-	-		-	-	H			_	-	-				+	+	+	+	+	+		-
	Į.																					17		7 14	9 11		+	+	+	+	+	+	-	1
4	-				_		L													oseno.							1				I	I		1
+				-			-		-				-	18	18.51	100		-		1			-			-	+	+	+	+	+	+	-	1
												Ī					T)	1				-	1		-		+	-	+	+	+	+	-	+
			-2						14							-						15					1			1	1			1
+	-	Н		-			-				4	Ľ					-					4						T						I
+				-	10		-		THE RES			-	-		-					-	H		-			3	+	+	-	+	+	+	-	1
					WY) (A)					100										i y		1				+	+	+	\dagger	+	1	-	t
				-	1			Ц					Ú,											NA.		T					I	L		İ
			-	Str	Ictu	ral ca	na	city	Ind.	ar v	mrk	inc	Ica	d		<		Go	ator	hai		211-	1	le c		L		-	L		+	\perp	L	ļ
1	T		T	T	1	00	1		0.0			u IV	100	-				Ge	13	04.6	7	kNI	wac	IB C	apa	T	+	+	+	+	+	-	-	+
													T D						Í	Ĩ					T	1	1	1	1		+	+		t
+	Н		4	-	4			\sqcup	-	4	4					1			4				\perp	Ţ	T	T	T	I			I			I
+	H	-	+	+	+		H	H	+	+	+	_	\dashv	+	+	+	\dashv		\dashv	+	+	-	+	-	+	+	-	-	-	-	+	-	L	F
				1					1		1			1		1	1		1	+	+	\dashv	+		+	+	+	+	+	+	+	\vdash		H
	\Box			I																				1	1	1	1	1			T	T		r
1							121.78 121.71		1						T	T	1		T	T	-	T	Т	Т	T	T	T	T	T		П			٢