HANDS-ON PEAK FLOW ESTIMATION

NOT FOR SALE

Government of Malaysia Department of Irrigation and Drainage

Urban Stormwater Management Manual for Malaysia

OVERVIEW

Rational Method

Drainage area

Runoff coefficient

RATIONAL METHOD

Rational Method

Q = CIA

where,

- Q = peak flow (m³/s)
- C = runoff coefficient
- / = average rainfall intensity (m/s)
- A = drainage area (m²)

In MSMAM:

Rational Method

RATIONAL METHOD

Rational Method

Drainage area

Runoff coefficient

Activity 1.

Justify the conversion factor 360 used in the Rational method equation recommended in MSMA 2nd edition (as Equation 2.3).

Rational Method

Drainage area

Runoff coefficient

Drainage Area A

Rational Method

Drainage area

Runoff coefficient

Activity 2.

Draw the boundary of catchment area based on the contour shown in Figure 1.

Runoff Coefficient C

Table 2.5: Recommended runoff coefficient for various landuses (DID, 2012)

Landuse	Minor System (≤ 10 yr ARI)	Major System (> 10 yr ARI)
Residential		
Bungalow	0.65	0.70
Semi-Detached Bungalow	0.70	0.75
Link and Terrace House	0.80	0.90
Flat and Apartment	0.80	0.85
Condominium	0.75	0.80
Commercial and Business Centres	0.90	0.95
Industrial	0.90	0.95
Sport Fields, Park and Agriculture	0.30	0.40
Open Spaces		
Bare Soil (No Cover)	0.50	0.60
Grass Cover	0.40	0.50
Bush Cover	0.35	0.45
Forest Cover	0.30	0.40
Roads and Highways	0.95	0.95
Water Body (Pond)		
Detention Pond (with outlet)	0.95	0.95
Retention Pond (no outlet)	0.00	0.00

Runoff Coefficient C

Runoff coefficient for mixed landuse

$$C_{\text{avg}} = \frac{\sum_{i=1}^{n} C_i A_i}{\sum_{i=1}^{n} A_i}$$

where,

- *i* = index for *n* number of segments of different landuse
- *n* = total number of segments of different landuse
- A_i = area of segment *i*
- C_i = runoff coefficient of segment *i*

Activity 3.

Subcatchment 1 has an area of 3.87 ha consisting of 94% flat & apartment area and 6% open grass spaces. Determine the runoff coefficient for subcatchment 1 considering 50-year ARI.

Rational Method

Drainage area

Runoff coefficient

		-

Rational Method

Drainage area

Runoff coefficient

It is the amount of rainfall during a period of time, usually expressed in mm/hr.

It can be estimated using an intensity-duration-frequency relationship (IDF) curve or the fitted mathematical equation at desired frequency (or average recurrence interval ARI) and time of concentration $t_{\rm c}$.

MSMA (DID, 2012) provides IDF curve and constants for fitted mathematical equation for 135 rainfall stations within all states in Peninsular Malaysia.

Q Search G h2o.water.gov.my/v2/index.cfm?bahasa=1 Portal WATER RESOURCES MANAGEMENT AND HYDROLOGY DIVISION DEPARTMENT OF IRRIGATION AND DRAINAGE KM 7, Jalan Ampang, 68000 Kuala Lumpur, Malaysia Phone: +603-42895400 Fax: 603-42564037 DID HQ NRE (æ % Data Performance Melayu Home i-Diary Intranet About Us Services Publication Education Contact Us Site Map Related Links Hydrology Procedure Rainfall and Water level Gerbang myMMS Kerajaan PublicInfobanjir InfoKemarau Taklimat Pelaksanaan Gerbang mvMMS Flood Monitoring System Drought Monitoring System National Hydrological A more user friendly web that shows Kerajaan di Jabatan Pengairan & Online info on water resources Network realtime rainfall and waterlevel data. Saliran Malaysia (JPS) status, early warning on potential Useful for indicators of potential drought and drought status for flooding or landslides. Penisular Malaysia. Debris and Mudflow Warning System Golok River Hydrological Information Supply of Data IWRM **Golok River Basin Information** 12 We provide hydrology data such as National Integrated Water Resources Portal 11

Rational Method

Drainage area

Runoff coefficient

Empirical IDF

$${}^{d}I_{\tau} = \frac{\lambda T^{\kappa}}{(d + \theta)^{\eta}}$$

where,

- / = average rainfall intensity (mm/hr)
- T = average recurrence interval (ARI) (0.5 \leq $T \leq$ 12 month and 2 \leq T \leq 100 year)
- $d = \text{storm duration (hr) (0.08333 } \leq d \leq 72)$

 $\lambda, \kappa, \theta, \eta =$ fitting constants dependent on location of rain gauge

Rational Method

Drainage area

Runoff coefficient

Average Recurrence Interval (ARI) T

It is the average length of time between rain events that exceeds the same magnitude.

Annual maximum discharges of the Guadalupe River

Year	1930	1940	1950	1960	1970
0		55,900	13,300	23,700	9,190
1		58,000	12,300	55,800	9,740
2		56,000	28,400	10,800	58,500
3		7,710	11,600	4,100	33,100
4		12,300	8,560	5,720	25,200
5	38,500	22,000	4,950	15,000	30,200
6	179,000	17,900	1,730	9,790	14,100
7	17,200	46,000	25,300	70,000	54,500
8	25,400	6,970	58,300	44,300	12,700
9	4,940	20,600	10,100	15,200	

There are 8 recurrence intervals covering a total period of 41 years between the first and last exceedences of 50,000 cfs

Return period
$$\overline{\tau} = \frac{41}{8} = 5.1$$
 years

Thus, the return period of an event of a given magnitude may be defined as average recurrence interval between events equalling or exceeding a specified magnitude.

Rational Method

Drainage area

Runoff coefficient

Average Recurrence Interval (ARI) T

Rational Method

Drainage area

Runoff coefficient

Average Recurrence Interval (ARI) T

Type of Development	Minor System (≤ 10 yr ARI)	Major System (> 10 yr ARI)	
Residential			
Bungalow and semi-detached dwellings	5	50	
Link house/apartment	10	100	
Commercial and business Centre	10	100	
Industrial	10	100	
Sport field, park and agriculture land	2	20	
Infrastructure/utility	5	100	
Institutional building/complex	10	100	

Table 1.1: Quantity design storm ARIs (Minimum year ARI) (DID, 2012)

Rational Method

Drainage area

Runoff coefficient

It is the time required for surface runoff to travel from the most remote part of the catchment to its outlet.

$$t_c = t_o + t_g + t_d$$

where.

- t_{o} = time of overland flow
- t_g = time of curb gutter flow t_d = time of drain flow

In rational method, $d = t_c$.

Time of Concentration t_{c}

Table 2.1: Equations to Estimate Time of Concentration (QUDM, 2007)

Travel Path	Travel Time	Remark
Overland Flow	$t_o = \frac{107.n^*.L^{1/3}}{S^{1/5}}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Curb Gutter Flow	$t_g = \frac{L}{40\sqrt{S}}$	t_g = Curb gutter flow time (minutes) L = Length of curb gutter flow (m) S = Longitudinal slope of the curb gutter (%)
Drain Flow	$t_d = \frac{n.L}{60R^{2/3}S^{1/2}}$	n = Manning's roughness coefficient (Table 2.3) R = Hydraulic radius (m) S = Friction slope (m/m) L = Length of reach (m) $t_d = Travel time in the drain (minutes)$

Rational Method

Drainage area

Runoff coefficient

Time of Concentration t_c

It is the time required for surface runoff to travel from the most remote part of the catchment to its outlet. $t_c = t_o + t_g + t_d$

Rational Method	Drainage area	Runoff coefficient	Rainfall Intensity
-----------------	---------------	--------------------	--------------------

Time of Concentration $t_{\rm c}$

Table 2.2: Values of Horton's roughness *n*^{*} (DID, 2012)

Land Surface	Horton's roughness <i>n</i> *		
Paved	0.015		
Bare Soil	0.0275		
Poorly Grassed	0.035		
Average Grassed	0.045		
Densely Grassed	0.060		

Drainage area

Runoff coefficient

	Manning roughness <i>n</i>			
Grassed drain				
Short grass cov	0.035			
Tall grass cove	Tall grass cover (≥ 150 mm)			
Lined drain				
Concrete				
Smooth f	inish		0.015	
Rough fir	nish		0.018	
Stone pitching				
Dressed stone in mortar			0.017	
Random stones in mortar or rubble masonry			0.035	
Rock riprap			0.030	
Brickwork			0.020	
Pipe material				
Vitrified clay			0.012	
Spun precast c	oncrete		0.013	
Fibre reinforced	d cement		0.013	
			0.011	
Rational Method	Drainage area	Runoff coefficient	Rainfall Intensity	

Table 2.3: Values of Manning's roughness coefficient *n* for open drains and pipes (DID, 2012)

Activity 4.

If the slope of overland paved surface in Subcatchment 1 is 3.74%. find the time of overland flow.

Given S = 3.74%, paved surface n^* = 0.015,

Rational Method

Drainage area

Runoff coefficient

Activity 5.

If the time in drain flow is 1.4 min, estimate the peak flow of subcatchment 1 (in Wangsa Maju, Kuala Lumpur) based on Rational method considering 50-year ARI.

Table 2.B1: Fitting constants for IDF empirical equation for 2 to 100-year ARI and storm duration of 5 mins to 72 hours (DID, 2012)

State	No	Station	Station name	Constants					
Slale	INO.	ID		λ	κ	θ	η		

$${}^{d}I_{T} = rac{\lambda T^{\kappa}}{(d + \theta)^{\eta}}$$

where,

- / = average rainfall intensity (mm/hr)
- T = average recurrence interval (ARI) (0.5 \leq $T \leq$ 12 month and 2 \leq T \leq 100 year)
- $d = \text{storm duration (hr) (0.08333 } \leq d \leq 72)$
- $\lambda, \kappa, \theta, \eta =$ fitting constants dependent on location of rain gauge