

PUSAT KECEMERLANGAN KEJURUTERAAN & TEKNOLOGI JABATAN KERJA RAYA PROGRAM LATIHAN JABATAN KERJA RAYA MALAYSIA TAHUN 2021

PROGRAM: KOMPETENSI MARITIM KURSUS DREDGING & RECLAMATION

Tarikh : 14 – 15 Julai 2021

Tempat : Webex / Google Meet

DR. NIK & ASSOCIATES SDN. BHD. (1998-1) ENGINEERING AND PROJECT MANAGEMENT CONSULTANTS

www.drnik.com.my

DAY 01 – 14th July 2021

SESSION 3 | PART B Hydrographic Survey (Dredging and Reclamation)

Sr. Najhan bin Shafiee General Manager Survey Department IFCON GEOHYDRO SDN BHD BSc. Surveying & Mapping, UEL, UK

2

GENERAL DEFINITION

Hydrography is the science of measuring and depicting those parameters that are necessary to describe

- the precise nature and configuration of the sea-bed
- its geographical relationship to the landmass
- the characteristics and dynamics of the sea.

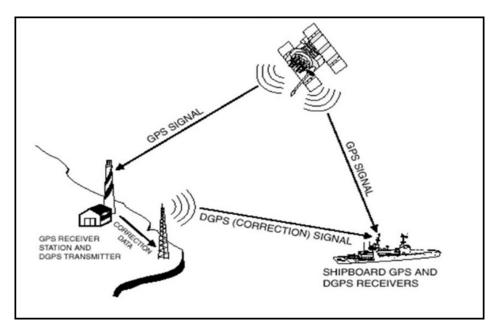
□ The parameters encompass **bathymetry**, **geology**, **geophysics**, **tides**, **currents**, **waves**, and certain other physical properties of sea water

ROLE OF HYDROGRAPHIC SURVEY FOR PROJECT

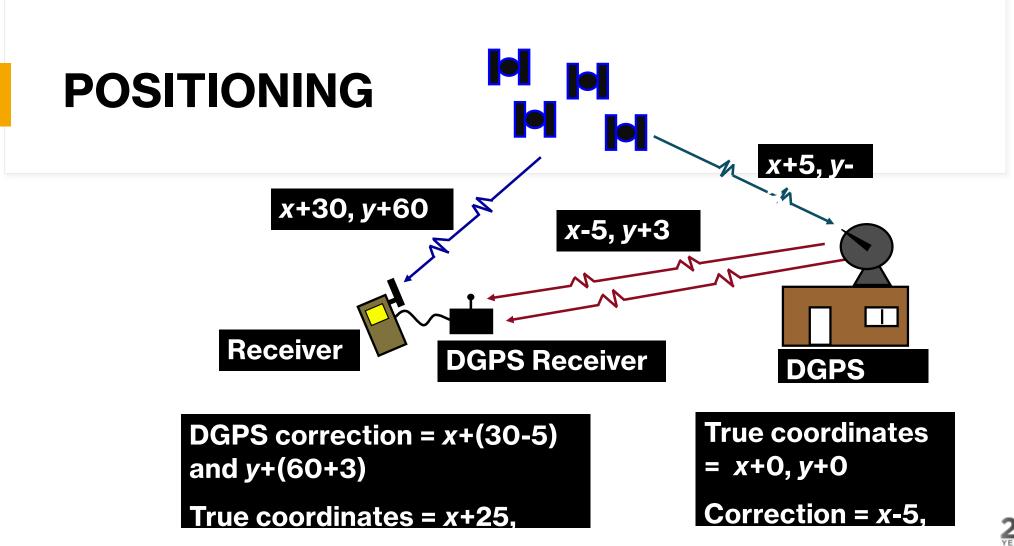
Hydrographic surveys are always employed

- to estimate the **dredging** requirements & quantities
- determine dredging contractor payment
- monitor the offshore disposal areas,
- certify final acceptance and clearance of a project to its authorized navigation depth.

DATA TYPE

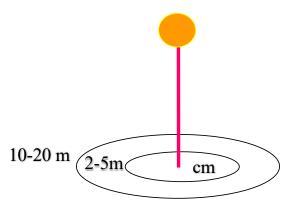

- **Bathymetry** : "measure of the depth," data provides depth contours of the bottom surface.
- "X,Y" = positioning data from Global Positioning System (GPS)
- "Z" = sounding data from echo sounder. Measures depth of water by time it takes for sound to transmit and return to transducer.
- Time = data used to correct for water level (tide) at time of data collection
- □ Features: data points, lines, and areas acquired to delineate natural and man-made charted features.

POSITIONING


1) Positioning (XY/Easting Northing or Latitude Longitude)

Positioning of soundings will acquired by DIFFERENTIAL GLOBAL POSÍTIONING SYSTEM (DGPS) technique. A basic system of DGPS requires a GPS receiver (called a Reference or Base station) placed on a precisely known surveyed point and a user GPS receiver in the field which normally known as rover or remote receiver. Both GPS receivers were tracking and observing satellites in view that passes in the area at the same time. Since Base Station receiver was sited on a known coordinated point, error in the measurement of each satellite can be calculated at the Base Station and these errors were then transmitted and applied as corrections to the Rover receiver in the field.

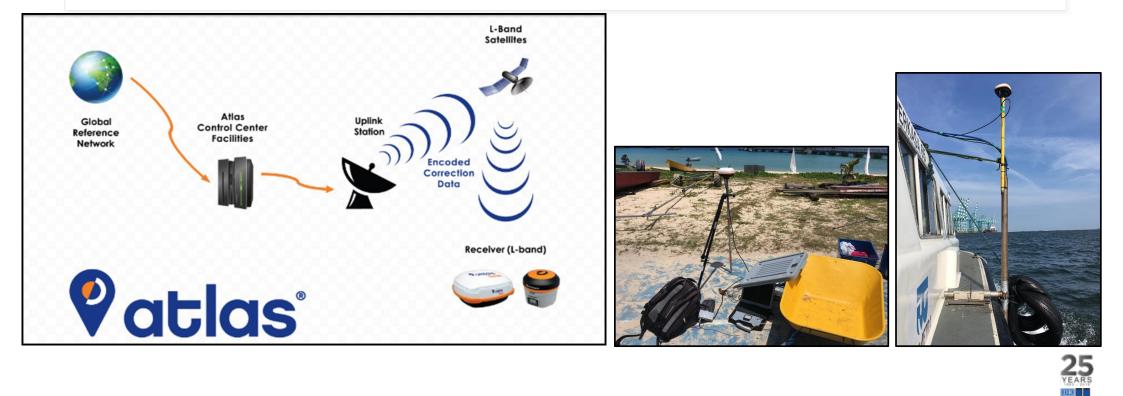
PROGRAM LATIHAN JKR 2021



PROGRAM LATIHAN JKR 2021

POSITIONING

Three Methods Or Accuracies Of Positioning


AUTONOMOUS 10-20 METERS
DIFFERENTIAL 2-5 METERS
PHASE DIFFERENTIAL CENTIMETER

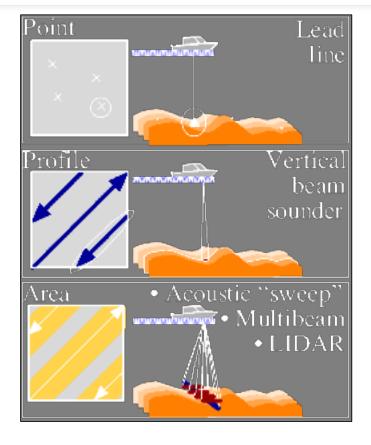
PROGRAM LATIHAN JKR 2021

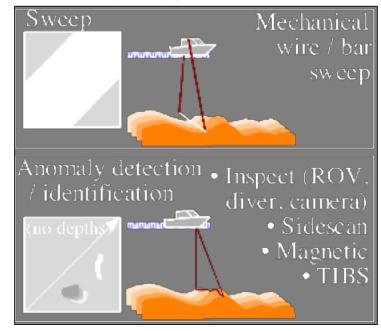
GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS)

□ The Sea Bed Level Is Normally Determined By Measuring The Depth Of Water Above The Sea Bed.

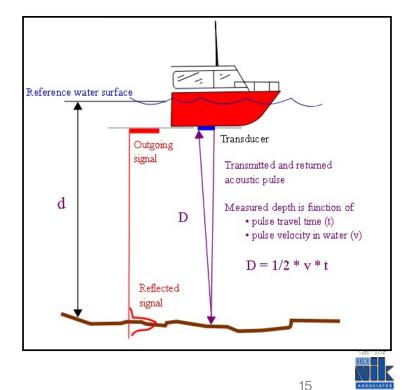
- □ The Measured Depth Values Are Simultaneously Recorded Relative To Some Appropriate Datum, Such As Chart Datum (Mostly The Local Level Of The Lowest Astronomical Tide : Lat)
- During The Period Of The Survey The Sea Level Must Be Recorded Accurately And Preferably At A Location Where The Sea Level Is At Any Time The Same As That In The Survey Area. In Some Cases Area The Difference In Sea Level Must Than Be Calculated By Using Long Wave Hydraulic Theory.

□ There Are Three Ways To Measure Water Depth :


- 1) Sounding Line (A Lead Line With Marks Every 0.1m)
- 2) Sounding Pole (For Limited Depth Only)
- 3) Echo Sounder (The Most Rapid And Convenient Method)


Why Depth Measurement Is Important

Depth Measurement & Hyrographic Survey Types


Accuracy Of Depth Measurement


- The Accuracy In Determining Sea Bed Levels Is Inferior To That Normally Attainable In Land Survey. When Sounding Close To Structures The Echo Sounder Can Be Affected By Side Echo's And A Lead Line Or Sounding Pole Should Be Used.
- The Accuracy Is Effected By The Characteristics Of The Sea Bed Material, The Surrents (Only When Using Lead Line), The Thru Position When Crossing Slopes And Wave Heights. For Consistent Results, The Method Of Sounding Should Not Vary, E.G The Same Type Of Echo Sounder Should Be Used During The Whole Project Duration.

How Echo Sounder Works

- An Echo Sounder Measures The Time Lap Between The Moment Of Sending A Sound Signal And The First Reception Of The Reflection Of That Signal On The Sea Bottom (=The Echo).
- The Transducer And Receiving Hydrophone Are In One. Multiplying This Time Lap With The Speed Of Sound In Water Results In Twice The Distance Between The Transducer And The Sea Bottom.
- The Bundle Width Has A Great Effect On The Actual Measured Depth When The Bottom Has A Slope. This Is Because Of The Fact That The First Echo Is Displayed On The Screen As The Bottom Straight Vertical Below The Transducer And This Is Not True When The Bottom Has A Slope.

WHAT ECHO SOUNDER DISPLAY

The top of the soft silt layer is reflecting the **200KHZ** signal and the harder rock and sand bottom are reflecting the low frequency **30KHZ** signal that travels through the soft silt layer.

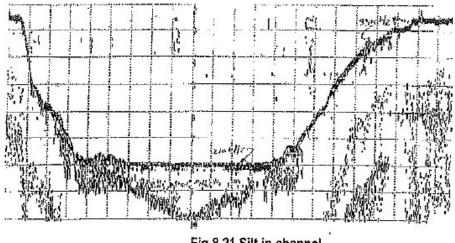


Fig 8.21 Silt in channel

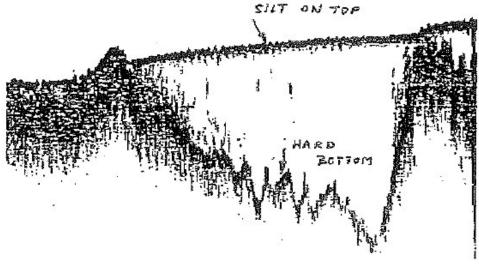
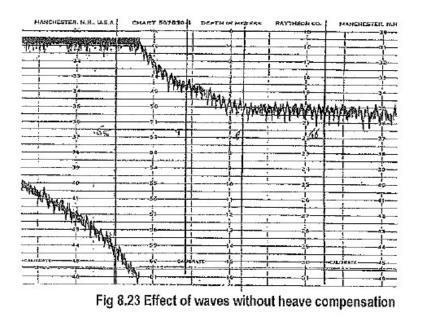
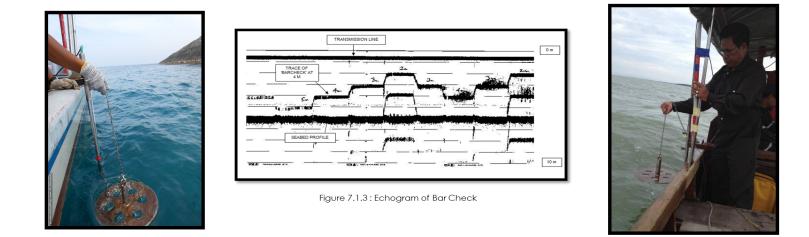



Fig 8.22 Silt on a rock bottom

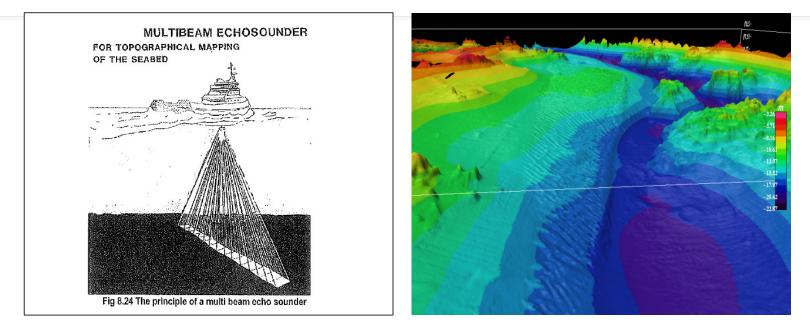
How Waves Effect Echo Sounder Result



□ THE EFFECT OF WAVES

As Stated Above The Negative Effect Of Waves Can Be Considerable And Is Due To The Heave, Pitch And Roll Movements Of The Surveying Vessel. When No Compensation Is Made For The Heave Caused By Waves The Result Will Look Like The Photo Above :

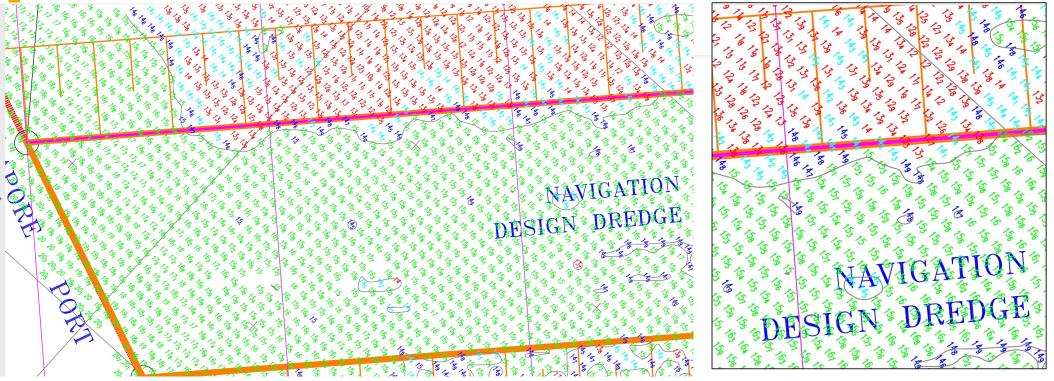
Calibration Of Echo Sounder



□ BAR CHECK

The Echo Sounder Must Be Checked Regularly By Performing A So Called "Bar Check". This Is A Very Simple Procedure: A Horizontal Plate (On A Bar) Is Lowered Under The Echo Sounders Position At Several Known Depths While The Depth Of The Plate Is Measured By The Echo Sounder. Another Type Of Useful Control Is Sailing Over A Horizontal Plate Fitted On The Bottom At A Known Level.

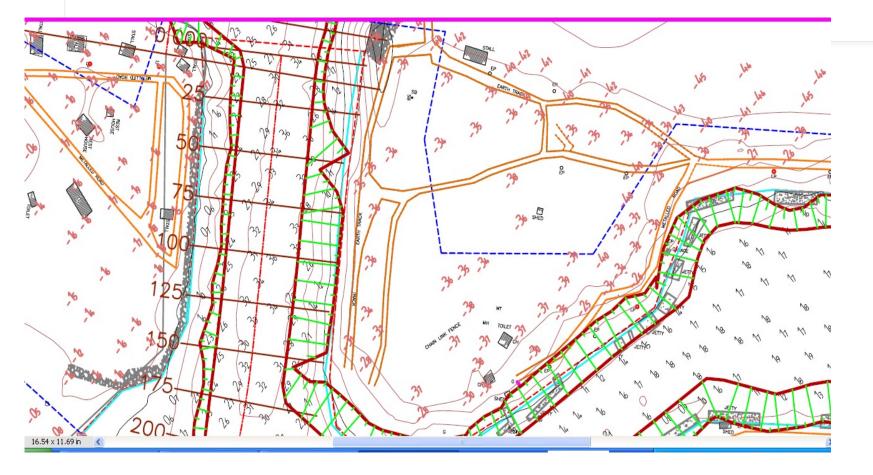
MULTI BEAM ECHO SOUNDER (MBES)



□ MULTIBEAM ECHO SOUNDER

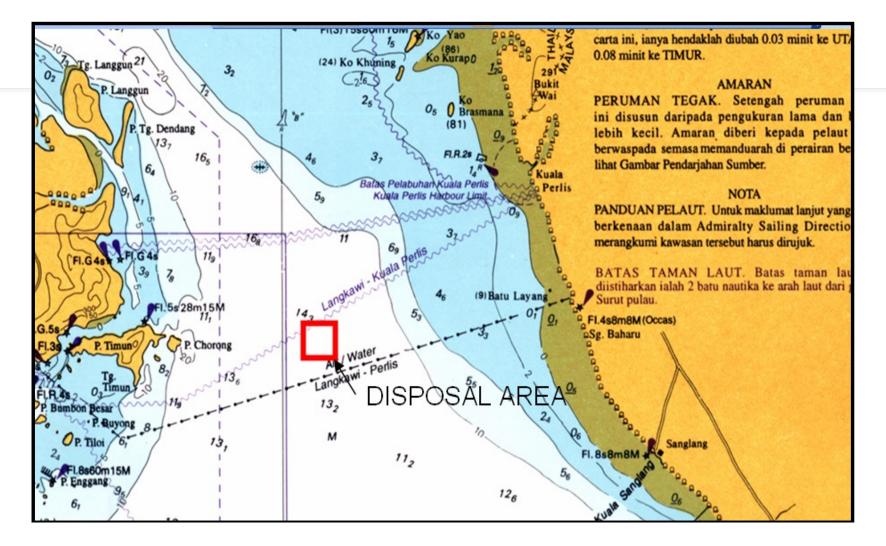
Modern Echo Sounding Techniques Use Many Narrow Beams At Once In One System Each Beam Targeted At A Slightly Different Angle As Referred To The Central Vertical Beam. These Echo Sounder Are Called Multibeam Systems

SURVEY RESLUTS



□ THE PRESENTATION OF SURVEY RESULTS

Single Beam Echo Sounding (Sbes) Results Are Traditionally Presented As Numbers On A Map Indicating The Local Depth.



SURVEY RESLUTS

NAVIGATION CHART

DATUM

What Datum to choose?

WHAT IS DATUM?

USED AS A BASIS FOR CALCULATIONS OR MEASUREMENTS, AS A LEVEL FROM WHICH ELEVATIONS AND DEPTHS ARE MEASURED IN SURVEYING. (REFERENCE LEVEL)

STANDARD PORT - CHART DATUM LOCAL PORT/JETTY - MSL (MEAN SEA LEVEL)/ LAND SURVEY DATUM (NGVD) NATIONAL GEODETIC VERTICAL DATUM.

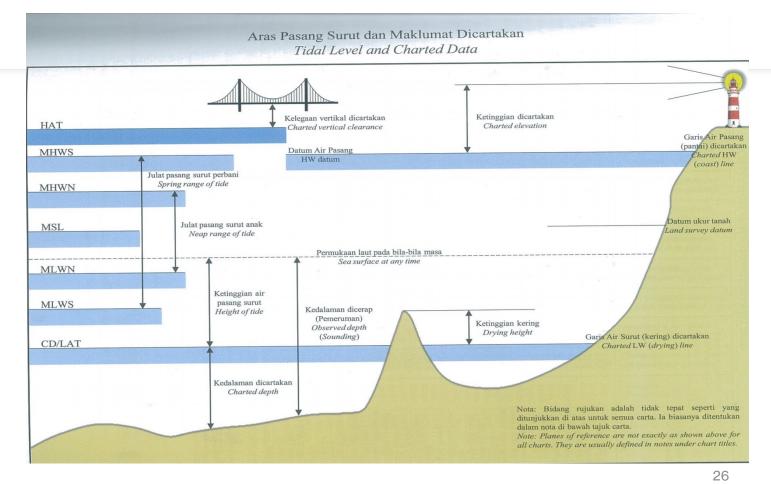
DATUM

1 Kedudukan

TANJUNG KELING

Datum and Relation

1.	Kedudukan :		7.	Position :					
	Garislintang	02° 12' 54" U		Latitude	02° 1	2' 54" N			
	Garisbujur 1	02° 09' 12" T		Longitude	102° 0	9' 12" E	Pelabuh Standar	an Piawai 2d Port	
2.	Aras Datum :		2.	Datum Level	:		Standar		
	4.769 meter di bawa Jabatan Ukur dan Malaysia, M 0331.				d Mapp	the Department ing Malaysia's 1.			
3.	Datum Carta :		3.	Chart Datum	:	10000	Teluk E Kuah		
	4.767 meter di bawa Jabatan Ukur dan Malaysia, M 0331.				d Mapp	the Department ing Malaysia's 1.	Butterw	Pier, Pulau	Pinang
4.	Jenis Air Pasang : Surut	Bercampur (Semiharian Dominan)	4.	Type of Tide		x (Dominant mi-diurnal)	Bagan I Pelabuh	han Klang ang Sedepa	
	Pasang Perbani	2.13 m		Spring Rise		2.13 m	Kuala I	inggi	
	Pasang Anak	1.54 m		Neap Rise		1.54 m	Tanjung Muar	g Keling	
	Julat Perbani	1.86 m		Spring Range	Э	1.86 m	Kuala H	Batu Pahat	
	Sela Air Pasang Min	06 ^j 50 ^m		Mean High W Interval	/ater	06 ^h 50 ^m	Johor B	g Pelepas Bahru	
5.	Sisihan piawai : Masa teramal Ketinggian teramal	± 16.1 min ± 7.8 sm	5.	Standard dev Predicted tim Predicted hei	е	± 16.1 mins ± 7.8 cm	Sungai Kuala I Kuala S Pulau I Pending Sri Am	g Langsat Belungkor Lundu Santubong Lakei g an	
	Г	TANJUNG	KELING				Sarikei Tanjun	g Manis	
		6.427 m		4 M0331			Lahad I Sempor Tawau	rna	
							Aras pa The abo	sang surut d ov <i>e levels a</i> r	li atas meru <i>re referred i</i>
	:	2.759 m	D'	TGSM			Pengira	an aras pasa dictions are	ang surut di
		1.660 m 1.658 m		atum Carta (TLDM) as Datum (JUPEM)			(a)	Abbrevia DSM HA	ations: Departm Local Ho
		0 m	Ze	ro of Tide Gauge				POL SMD	Proudma Sarawak
			69				<i>(b)</i>	The year	rs between
			69						

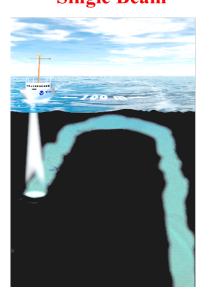

1. Position

ARAS PASANG SURUT SEPARUH HARIAN PELABUHAN PIAWAI SEMI DIURNAL STANDARD PORT TIDAL LEVELS Pihak Berkuasa (a) Tide Air Surut Falak Terendah Lowest Astronomical Tide i Min Spring Min Spring Min • Neap Authority for (a) Pasang Falak Tertin thest Astronomical 7 Air Surut Anak Min Mean Low Water Neap Perbani] Water Sp e Air Surut Perbani N Mean Low Water S Air Pasang Anak N Mean High Water (q) Laut Min 1 Sea Level Tahun Cerapan Years of Tidal Observations (b sang l High Pemalar Constants Aras I Mean Air Pa Mean Air | High Cen m. 0.00 m. 0.56 0.53 m. 2.18 1.94 m. 3.07 2.74 m. m. m. 1.46 1.82 1.64 3.56 3.26 DSM RMN RMN 1991 - 04 (13 year 0.00 RMN RMN RMN 2005 - 09 (4 years) 1.94 1.96 1.96 1.96 2.06 2.69 2.69 2.69 2.69 3.69 3.09 3.06 2.96 1.40 1.45 0.00 0.56 1.68 RMN RMN RMN 2005 (6 mths) 0.00 0.72 1.71 DSM RMN RMN 1989 - 03 (13 years 0.00 0.77 0.82 1.48 1.45 $\begin{array}{c} 1.72 \\ 1.76 \\ 1.85 \\ 1.72 \\ 3.03 \\ 2.71 \\ 1.55 \\ 1.29 \\ 1.19 \\ 1.17 \\ 1.59 \\ 1.77 \\ 1.70 \end{array}$ RMN RMN RMN 2004 - 06 (2 years) 2010 – 11 (1 years) 1989 - 03 (13 years) RMN 0.00 RMN RMN 1.45 1.45 1.25 2.35 2.08 1.14 0.96 0.88 2.24 2.20 3.72 3.34 1.96 3.45 3.48 5.82 RMN 0.75 0.52 0.98 0.85 2.94 2.93 5.09 4.57 2.79 RMN 0.00 DSM RMN RMN 2009 - 11 (2 years) RMN 0.00 0.00 DSM RMN RMN 1992 - 05 (13 year 5.31 3.51 ITS ITS ITS ITS RMN 1979 (1 years) 0.00 RMN 1979 (1 years) 0.31 1.61 2.27 2.10 2.91 2.65 0.00 0.31 0.29 RMN RMN RMN 2007 - 09 (1 years) 0.00 DSM RMN RMN 1991 - 02 (11 years 1.51 2.03 2.06 2.59 0.00 0.28 0.83 RMN RMN RMN 2013 - 14 (1 years) 1.15 1.26 1.21 0.00 0.43 ITS ITS ITS RMN 1979 (1 years) 0.00 0.42 0.37 2.28 3.79 3.68 ITS RMN 1979 (1 years) 0.00 2.20 3.04 DSM RMN RMN 1989 - 03 (13 years 0.00 0.30 1.17 1.67 1.66 2.16 2.73 3.03 3.75 4.00 RMN RMN RMN 2004 - 05 (1 years) 1.00 2.20 2.05 2.07 2.11 2.39 3.02 RMN 1990 - 03 (13 years) 0.00 0.99 3.41 DSM RMN 0.00 0.00 0.00 0.00 0.92 0.93 2.54 2.58 3.18 3.20 3.22 3.81 4.71 3.62 3.71 3.86 4.39 1.56 1.56 1.61 1.63 2.11 2.80 2.22 1.52 2.56 RMN RMN RMN 1989 (1 years) RMN RMN RMN 2010 - 13 (3 years) 0.99 0.99 0.97 1.33 2.13 1.23 0.92 1.66 2.60 3.15 3.93 RMN RMN 2004 - 05 (1 years) RMN SMD RMN 1976 (1 mths) POL 0.00 5.54 SMD POL RMN 1977 (1mths) 3.50 3.34 2.31 0.00 4.20 4.87 6.32 LSD RMN RMN 1988-90 (2 years) 0.00 4.46 5.45 6.03 SMD POL RMN 1980 (7 mths) 3.70 5.52 0.00 3.10 6.00 SMD POL RMN 1975 (1 mths) 0.00 3.59 4.62 6.57 Н Н RMN 1936 (1 mths) 5.51 2.05 2.04 3.39 6.33 2.54 2.55 0.00 1.49 2.47 0.98 3.50 4.53 SMD Η RMN 1960 (1 mths) 1.40 1.38 2.35 0.00 0.33 1.19 DSM RMN RMN 1995-03 (7 years) 0.29 0.95 1.17 RMN 0.00 RMN RMN 2010-11 (2 years) 3.84 DSM RMN RMN 1.67 1991-03 (12 years) 0.00 0.64 2.01 rujuk kepada DATUM CARTA, di mana sama dengan nilai kosong (0) pada ramalan pasang surut dalam semua keadaan. to CHART DATUM, which is same as the zero of the tidal predictions in all cases. dilaksana menggunakan kaedah permalar harmonik. ed using the harmonic method. ment of Survey and Mapping, Malaysia. Hydrographer of the Navy, U.K. Land and Survey Department. H LSD Harbour Authority. man Oceanographic Laboratory, U.K. RMN National Hydrographic Centre, Royal Malaysian Na ak Marine Department. International Tidal Survey ITS

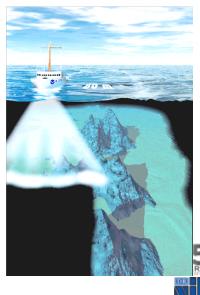
en which the observations were obtained are given, the number of complete years observations in brackets.

DATUM

Tides Types


PROJECT REQUIREMENT

Requirements For Hydrographic Survey In Dredging & Reclamation Project


Dredging & Reclamation

i) What Type Of Survey Needed?

Single Beam Echo Sounder (SBES) - shallow area < 5m - 10m depth average or Multi Beam Echo Sounder (MBES) - deep area > 5m to 20m depth average Combination of Bathymetric Survey & Topographic Survey (Reclamation)

Multi Beam

PROJECT REQUIREMENT

Requirements For Hydrographic Survey In Dredging & Reclamation Project

ii) Standard Port - MBES iii) Local port /Fisherman / RTB - SBES

iv) If there were cables /pipe /boulders /coral /wreckage underneath the proposed channel or Reclamation. What type of survey should be applied?

- a. Magnetometer Survey to identified metal element under the seabed/measure magnetic field.
- b. Side Scan Sonar to capture image ie. Ship wreck,coral or exposed big pipe.
- c. Sub-bottom profiler to gather layers of seabed profile ie. Rock,sand or mud etc

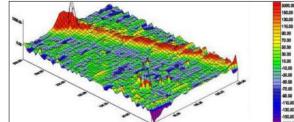
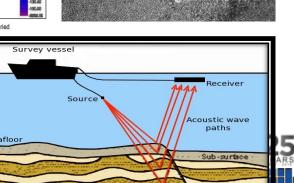
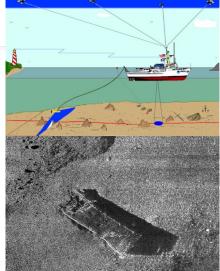




Figure 3: Sample of Magnetic Anomaly Data of 18-inch Stainless Steel Pipe Buried

PROJECT REQUIREMENT

Requirements For Hydrographic Survey In Dredging & Reclamation Project

DREDGING & RECLAMTION cont..

vi) What Coordinate System to be used GDM 2000 CASSINI OR RSO / MRSO / UTM / WGS 84

Contractor for dredging usually apply UTM & WGS 84 which widely used globally Contractor for reclamation mostly use RSO if the size of reclamation is enormous

However when the project is completed the client will engage Licensed Surveyor for land matters. Licensed Surveyor will apply GDM2000 in their survey for Land Office approval. Conversion between multiple coordinate systems are unavoidable. Conversion tends to produce error.

Hence, the accuracy of the survey is utmost important. There must be some standards to be followed as guidance.

HYDROGRAPHIC STANDARD SAMPLE

IHO STANDARDS FOR HYDROGRAPHIC SURVEYS (S-44) 5th Edition February 2008

TABLE 1

Minimum Standards for Hydrographic Surveys	
(To be read in conjunction with the full text set out in this document.)	

Defense	Orden	<u> </u>	n with the full text set out in th	1b		
Reference	Order	Special	la		2	
Chapter 1	Description of areas.	Areas where under-keel	Areas shallower than 100	Areas shallower than 100	Areas generally deeper than	
		clearance is critical	metres where under-keel	metres where under-keel	100 metres where a general	
			clearance is less critical but	clearance is not considered to	description of the sea floor is	
			<u>features</u> of concern to surface	be an issue for the type of	considered adequate.	
			shipping may exist.	surface shipping expected to		
				transit the area.		
Chapter 2 Maximum allowable THU		2 metres	5 metres + 5% of depth	5 metres + 5% of depth	20 metres + 10% of depth	
95% Confidence level						
Para 3.2	Maximum allowable TVU	a = 0.25 metre	a = 0.5 metre	a = 0.5 metre	a = 1.0 metre	
and note 1	95% Confidence level	b = 0.0075	b = 0.013	b = 0.013	b = 0.023	
Glossary	Full Sea floor Search	Required	Required	Not required	Not required	
and note 2		-	-	*		
Para 2.1	Feature Detection	Cubic features > 1 metre	Cubic <i>features</i> > 2 metres, in			
Para 3.4		, i i i i i i i i i i i i i i i i i i i	depths up to 40 metres; 10%			
Para 3.5			of depth beyond 40 metres	Not Applicable	Not Applicable	
and note 3						
Para 3.6	Recommended maximum	Not defined as <i>full sea floor</i>	Not defined as <i>full sea floor</i>	3 x average depth or 25	4 x average depth	
and note 4	Line Spacing	search is required	search is required	metres, whichever is greater		
and <u>note 4</u> Enne spacing		<u>source</u> is required	<u>source</u> is required	For bathymetric lidar a spot		
				spacing of 5 x 5 metres		
<u> </u>				1		
Chapter 2	Positioning of fixed aids to					
and note 5	navigation and topography	2 metres	2 metres	2 metres	5 metres	
	significant to navigation.					
	(95% <u>Confidence level</u>)					
Chapter 2	Positioning of the Coastline					
	and topography less					
and <u>note 5</u>	significant to navigation	10 metres	20 metres	20 metres	20 metres	
	(95% Confidence level)					
	(conguence teref)					
Chapter 2	Mean position of floating					
and note 5	aids to navigation (95%	10 metres	10 metres	10 metres	20 metres	
and note 5	Confidence level)					
μ						

SURVEY PROJECT (EXAMPLE)

PROJECT OVERVIEW

Survey Area

Geodetic Parameter

Bathymetric Survey

Tidal Observation/BM Location

Bathymetric Survey Guideline

Quality Control

Survey Equipment

Survey Team Organization

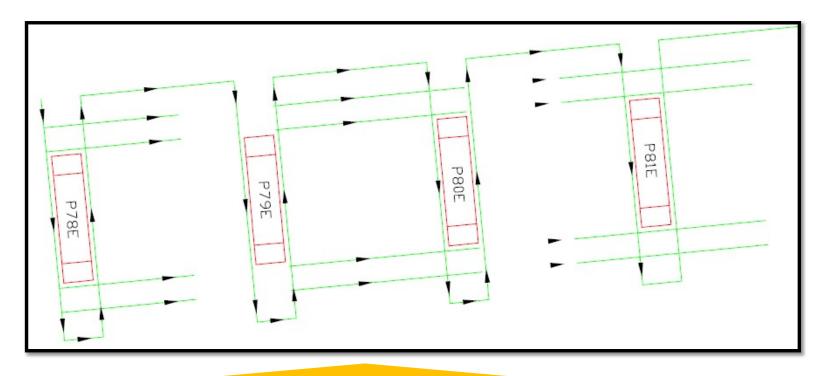
Tentative Programme

Other Possibility Method

Video

PROGRAM LATIHAN JKR 2021

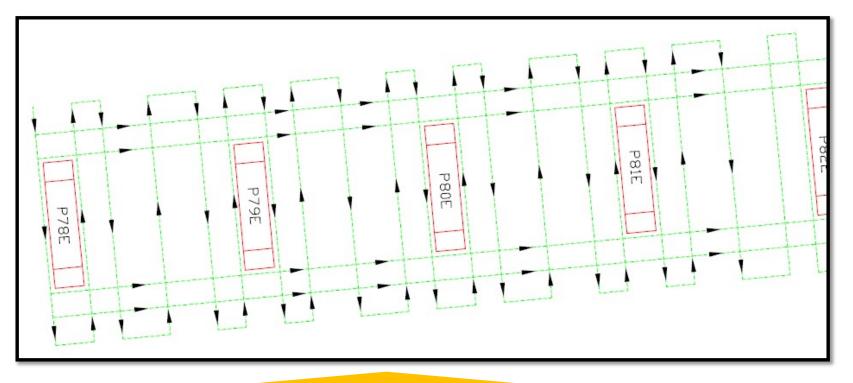
SURVEY AREA


PLAN VIEW

3D VIEW PROGRAM LATIHAN JKR 2021 33

SURVEY AREA

Original Sounding Lines


Hydrographic survey at 1m interval offset from each / every pier

PROGRAM LATIHAN JKR 2021

SURVEY AREA

Proposed Additional Lines For Additional Data

Hydrographic survey at 10m interval

PROGRAM LATIHAN JKR 2021

GEODETIC PARAMETER

SATELLITE GEODETIC SYSTEM (GPS)

Datum name Reference spheroid Semi-major axis Semi-minor axis Inverse flattening Eccentricity squared WGS 84 WGS 84 6 378 137.0 metres 6 356 752.314 2 metres 298.257 223 563 0.006 694 379 990 13

LOCAL GEODETIC REFERENCE SYSTEM AND MAPPING PROJECTION PARAMETERS

Datum Name TRIANGULATION) Reference Spheroid Semi-major axis Semi-minor axis Inverse flattening Eccentricity squared KERTAU (M'SIAN REVISED

Modified EVEREST 6 377 304.063 m 6 356 103.039 m 300.8017 0.006 637 846 63

PROGRAM LATIHAN JKR 2021

GEODETIC PARAMETER (cont.)

LOCAL GEODETIC REFERENCE SYSTEM AND MAPPING PROJECTION PARAMETERS (cont.)

Projection system Orthomorphic (MRSO) Projection type Unit of coordinates Latitude of Origin Longitude of Origin Bearing of Initial Line Skew to Rectified (Gamma) Basic Longitude (Omega) False Origin (Easting) False Origin (Northing) Scale factor at Origin Malayan Rectified Skew

Rectified Skew Orthomorphic Metres 4° 00' 00" N 102° 15' 00" E (Alpha) 323° 01' 32.8458" E 323° 07' 48.3686" E 105° 14' 11.19435" E 804 671.30 metres 0.00 metres 0.999 84

GEODETIC PARAMETER (cont.)

DATUM TRANSFORMATION

Transformation from WGS 84 to Kertau (MRT) Datum

DX	379.77603 m
DY	-775.38371 m
DZ	86.60926 m
Rotation	X 2.59674 sec
Rotation	Y 2.10213 sec
Rotation	Z -12.11377 sec
Scale	1

WGS 84 Datum

Latitude
Longitude
Height

2° 01' 43.447" N 102° 33' 13.716" E 0.00 m

38

PROGRAM LATIHAN JKR 2021

GEODETIC PARAMETER (cont.)

Kertau (MRT) Datum

Latitude	2° 01' 43.799" N
Longitude	102° 33' 19.341" E
Height	3.266 m

MRSO Grid

Easting Northing 506 447.764 m 224 442.530 m

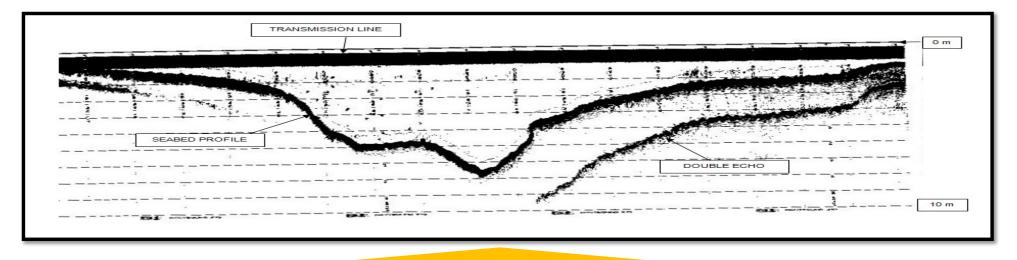
PROGRAM LATIHAN JKR 2021

BATHYMETRIC SURVEY Methodology

Positioning of Soundings

Digital Hydrographic Surveying System

Sample of Survey Boat / Vessel


Sounding Datum (Land Survey Datum)

40

PROGRAM LATIHAN JKR 2021

METHODOLOGY

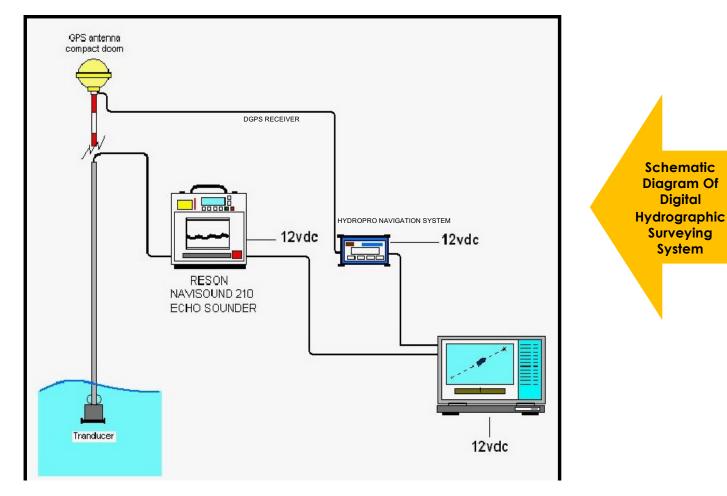
Typical Seabed Profile Recorded On Echogram By Echo sounder

- **Option I** : Single Frequency (High Frequency)
- **Option II** : Dual Frequency (High & Low Frequency)

PROGRAM LATIHAN JKR 2021

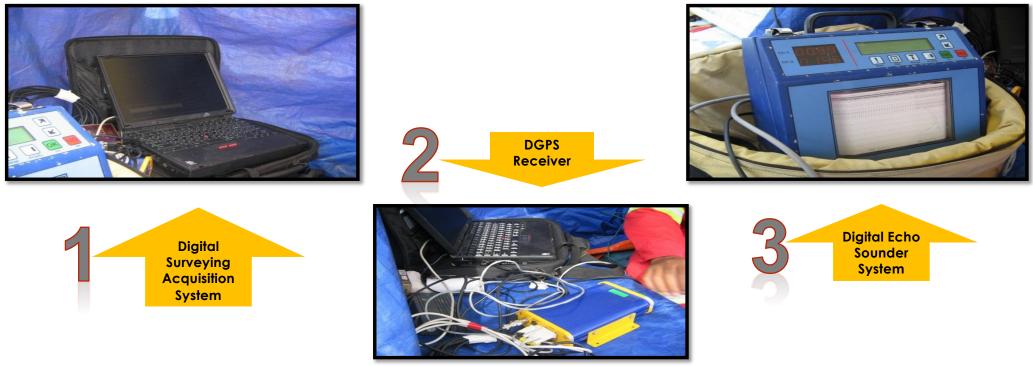
POSITIONING OF SOUNDING

Illustration of OmniSTAR DGPS Operation Diagram


42

25 YEARS

ASSOCIATE


PROGRAM LATIHAN JKR 2021

DIGITAL HYDROGRAPHIC SURVEYING SYSTEM



DIGITAL HYDROGRAPHIC SURVEYING SYSTEM (cont.)

PROGRAM LATIHAN JKR 2021

DIGITAL HYDROGRAPHIC SURVEYING SYSTEM (cont.)

Hydro Pro Navigation Software Interface

PROGRAM LATIHAN JKR 2021

SAMPLE OF SURVEY BOAT / VESSEL

PROGRAM LATIHAN JKR 2021

□ SOUNDING DATUM (Land Survey Datum)

PROGRAM LATIHAN JKR 2021

PROPOSED TIDAL OBSERVATION/TBM LOCATION

PROGRAM LATIHAN JKR 2021

BATHYMETRIC SURVEY GUIDELINE

Date: 18 April 2013 Reference No: PB/ 1	H04	BATHYMETRIC SURVEY GUIDELINE Client: PLUS MALA BERHA				
Location		Coordin	nate	Survey Area (Approx.)	Survey Class
PENANG BRIDGE		-		(approx 400m under the bridge toward Penang)		IHO Order 1B
Hydrographic Surve	yor (Sup	pervising)	Certification			
CDR (R) Hj. Masrap RMN	Bin Hj. M	lokhtar,	'H' Charge, I	FIG/IHO Cat A Hyd	drographic	Surveyor
Hydrographic Surve	yor (Fiel	d Work)	Certification			
Ahmad Sukri Bin Sa	ad		Dip. of Land	Surveying UiTM	×	
Purpose of Survey						
Purpose of Survey & Survey area		HYDROGRAPHIC SURVEY				
Horizontal Positionin	g				Datum	: Local Gri
Connection to Horiz Datum	ontal	Coordinate System will be referred to MRSO				
Methods of Obtaini Horizontal Position	ng	Differential Global Positioning System (DGPS) reference to World Geodetic System 84 (WGS84) with accuracy within 1.0 meter				
Calibration Method Calibration Frequen		Known Coordinates within the area to be used for Differential GPS confidence check and verification at least once, before commencement of survey works				
Dynamic Calibratio	n of	Observi	Observing redundant lines of position or passing at fix object			
Survey System		ofknow	of known coordinate point			
Vertical Datum				Da	tum: Local (Chart Datur
Connection to Verti	cal	Vertical	Vertical Datum will be based on Chart Datum / LSD for			
Datum		bathym	netric survey a	nd LSD for topogr	aphic surve	У
Location of Tide Go	uges	Where i	s appropriate	and nearby		
Method of Measurin Heights	g Tidal	Self recording tide gauge with 10 minute sampling interval				

	Proposed boat Specifications :		
Survey Vessel Description (Length, Beam, Type)	Hull Material Boot length Boot Width Boat Draft Engine Cruising Speed Number of Crew	: Fiber Glass :60 ff (18m) :13.5 ff (1.0m) :4.5ff (1.0m) :2 x 200 BHP :15 Knots :2 to 5 People	
Method(s) to be used to Determine Least Depths	Runningsurvey lines at object	closer intervals over the expected	
Echo Sounder Frequency(s)	Single Frequency of 210 Range Accuracy Samplerate) kHz :0.2 to 600m depth :1 cm at 210 KHz (1 sigma) :20 Hz	
Method and Frequency of Echo Sounder Calibration	Bar Check Calibration before and after sounding works		
Limiting Sea Conditions affecting Survey Quality	Seastate greater than 2 meters wave		
Seabed Coverage			
Method to Ensure Seabed Coverage Criteria is met	Close sounding line interval of 5mm on paper with continuous depth measurement along the survey line		
Echo Sounder Pulse Repetition Rate	20 pulses per second		
Beam Widths - Along Track and Across Travel	7.5°		
Survey Vessel Speed over Ground	6-9 Knots		
Sounding Line Spacing and Orientation	Sounding line between piers will be at 20 meters interval and adjacent to the piers on both sides. The Sounding lines is set to 20 meters parallel to the bridge for both sides.		

PROGRAM LATIHAN JKR 2021

BATHYMETRIC SURVEY GUIDELINE (cont.)

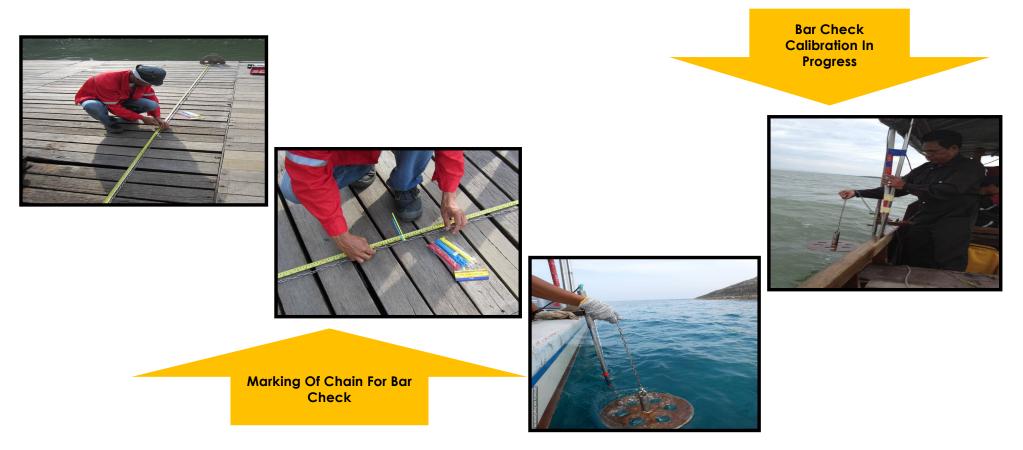
Sounding Reduction and Data Presentation				
Methods to Reduce Raw Data to Sounding Datum	Apply reduced tides from observed tide data			
Principle and Method used in Sounding Selection	Setting depth selection parameter to "least depth" in Terramodel software			
Positioning of Selected Soundings	Differential Global Positioning System (DGPS)			
Method of Contour Generation	Trimble Terramodel software			
Scale of Plans	1 : 5000 or an appropriate scale approved by the Client			
Digital Format of Final Data	Autocad Format DWG in hardcopy and softcopy and digital ASCII Format of xyz data			
Relevant Survey Records	Field books, calculation sheets, tide/water level records, levelling records, echo trace, datum relationship and track plots			
Data Quality and Retentio	n			
The Method(s) used to Derive the Quality of the Data and Ability to meet the Depth Tolerance as Required in the Standards	Standard Quality Procedure :IHO (Please refer Table 1 as attached) Depth :Echo Sounder Calibration using Bar Check method Position :Confident check position of survey boat at known coordinated point before start of sounding works			
Survey guideline and the methods described herein conform to the survey specifications and met the minimum standard for hydrographic survey in accordance with the IHO Standard for Hydrographic Survey SP 44 5th Edition, February 2008, Order 1B. Prepared by : Sr. Najhan Shafie Nano Geoexplore Sdn. Bhd. Date : 18 April 2013				

PROGRAM LATIHAN JKR 2021

Echo Sounder Calibration

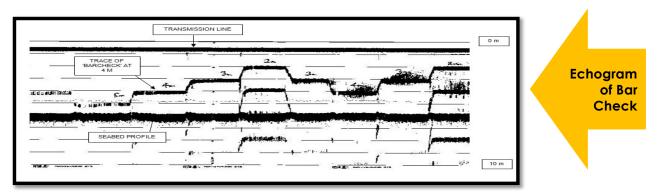
Result of Barcheck

Trackplot


DGPS Integrity Check

Data Processing

Data Processing Flow Chart

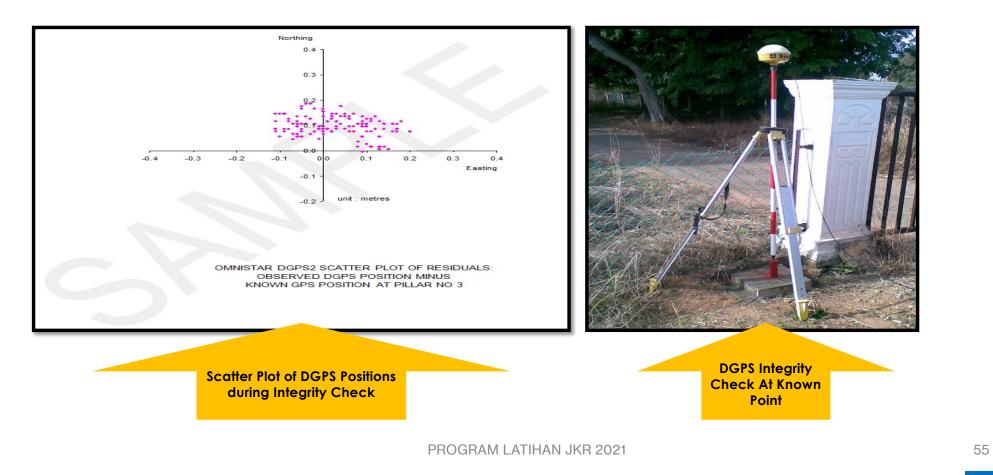

PROGRAM LATIHAN JKR 2021

PROGRAM LATIHAN JKR 2021

□ RESULT OF BARCHECK

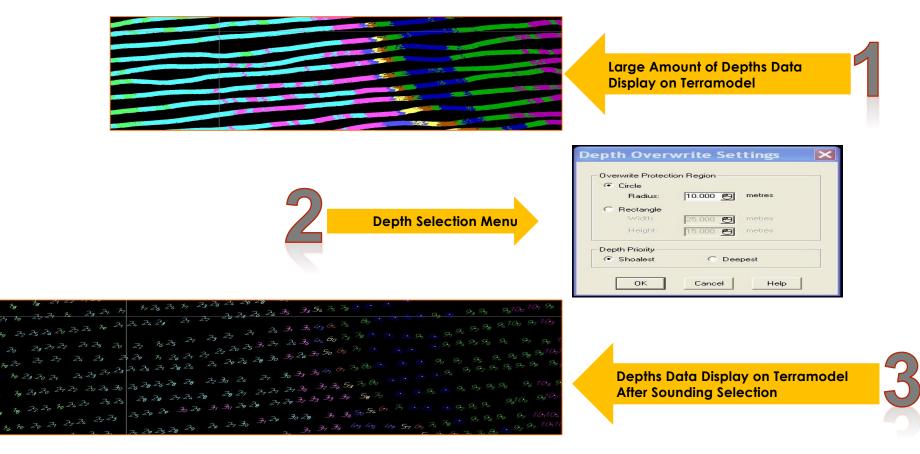
PROGRAM LATIHAN JKR 2021

□ DGPS INTEGRITY CHECK

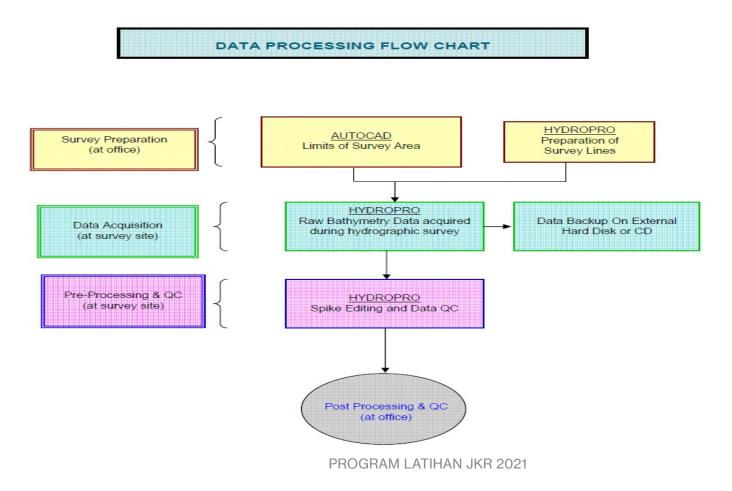

	General Location Station Name	Development Project At P	g And Reclamation Pelabuhan Tanjung	
		Tapak Kalibrasi GNSS W		
		Pillar No. 3	and a majo	
	Grid Position	353659,0444 N	804320,4456 E	
	Geographic Position	03º 11' 45,46049" N	101º 44' 16,94198	8" E
	Datum	WGS84		
	Projection	UTM Zone 47 North		
	DGPS Serial No	430 169 740001		
	Surveyor	Shukri, Reduan	and have	
	Time	11:49:00		
	Date	January 2013		
		DGPS VERIFICATION CH		P
	DGPS AN	ALCON.	"Contractor	ences
	Easting	Northing	dE	dN
	804320.515	353659.151	0.0694	0.1066
	804320.515	353659.151	0.0694	0.1066
	804320.525	353659.151	0.0794	0.1066
	804320.535	353659.141	0.0894	0.0966
	804320.565	353659.101	0.1194	0.0566
	804320.525	353659.081	0.0794	0.0366
_	804320.535	353659.091	0.0894	0.0466
L	804320.545	353659.041	0.0994	-0.0034
	804320.565	353659.051	0.1194	0.0066
	804320.545	353659.051	0.0994	0.0066
-	804320.615	353659.081	0.1694	0.0366
	804320.595	353659.061	0.1494	0.0166
Mean	804320,714	353659.040	0.2688	-0.0040
Maximum	804321.085	353659.151	0.6394	0.1066
Alter				
Minimum	804320.425	353658.931	-0.0206	-0.1134
Range	0.660	0.220	0.6600	0.2200
Deviation	0.131	0.056	0.1310	0.0558

PROGRAM LATIHAN JKR 2021

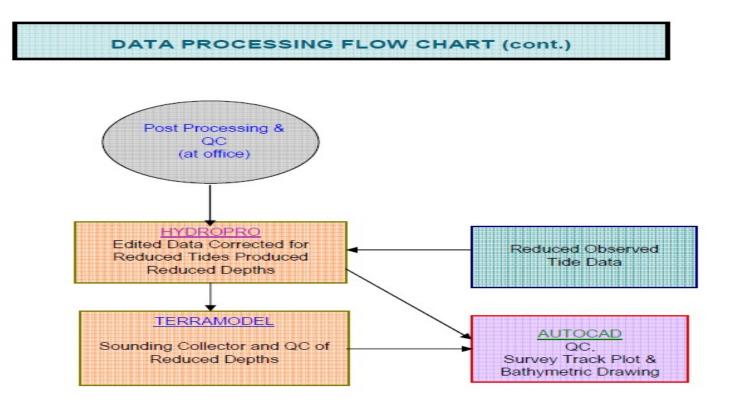
Integrity Check



□ DGPS INTEGRITY CHECK (cont.)



DATA PROCESSING



PROGRAM LATIHAN JKR 2021

DATA PROCESSING FLOW CHART

□ DATA PROCESSING FLOW CHART (cont.)

PROGRAM LATIHAN JKR 2021

SURVEY EQUIPMENT

PROCESSING SOFTWARE

* Terramodel

SURVEY EQUIPMENT

- * Reson Navisound Single Beam Echo Sounder
- Trimble Hydropro Software
- * Fugro Omnistar DGPS 12 Channels
- * RBR Seabed Tide Gauge
- Automatic Level
- Bar Check
- Survey Boat

TGR-1050

SERIAL 14682

RBR

CE


10.111233-1021

PROGRAM LATIHAN JKR 2021

AutoCAD

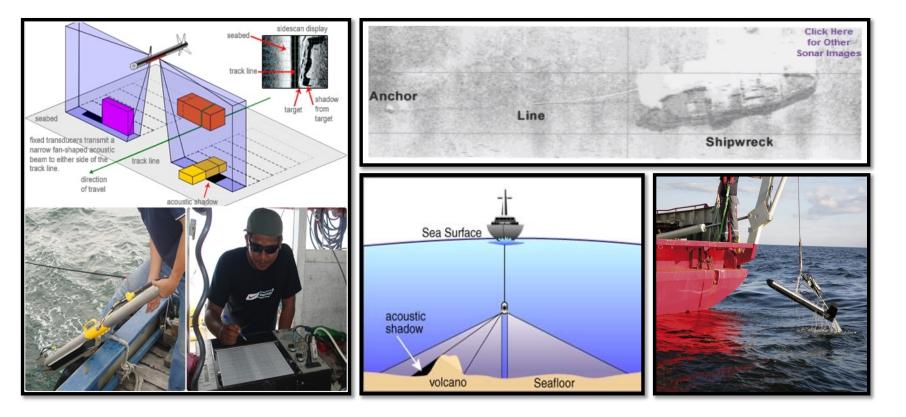
SURVEY TEAM ORGANIZATION

PROGRAM LATIHAN JKR 2021

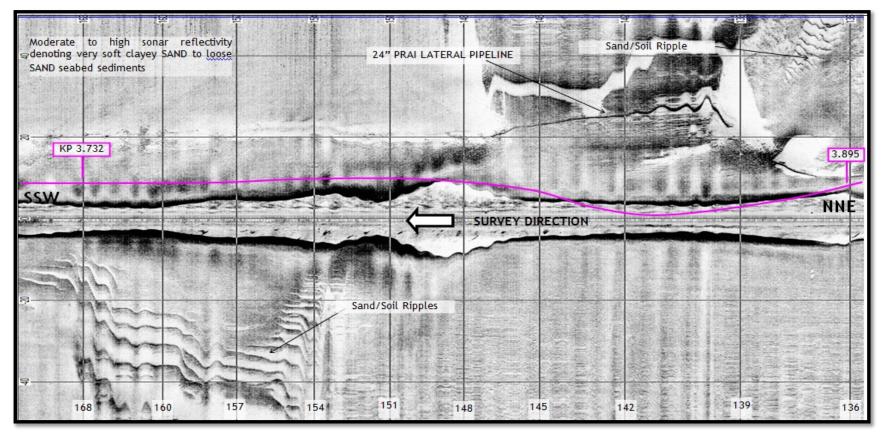
TENTATIVE PROGRAMME

DATE	WORK PROGRESS	EXPECTED COMPLETED
29 APRIL	LAND TEAM	5 WEEKS
7 ΜΑΥ	SEA TEAM	1 WEEK
15 MAY	PROCESSING DATA	4 WEEKS

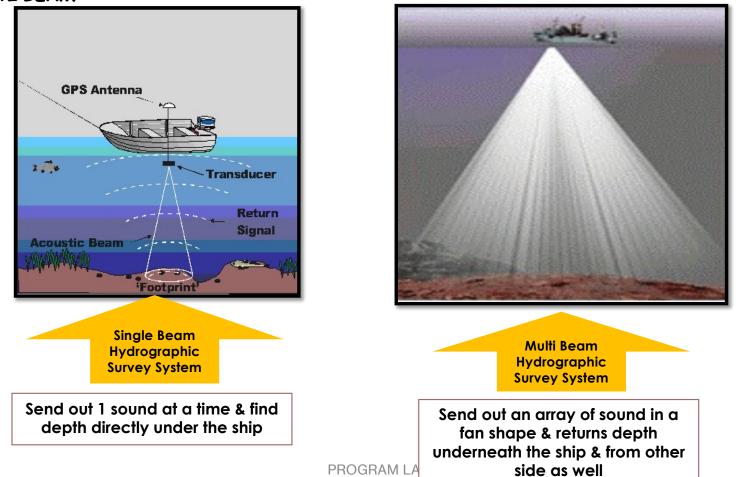
PROGRAM LATIHAN JKR 2021


□ TERESTRIAL 3D SCANNER

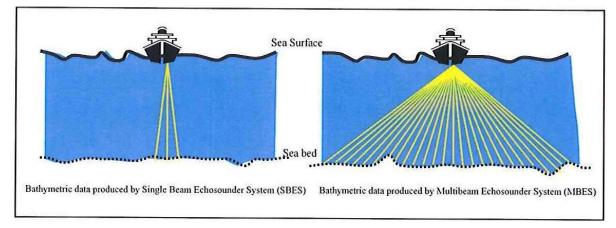
PROGRAM LATIHAN JKR 2021


□ SIDE SCAN SONAR

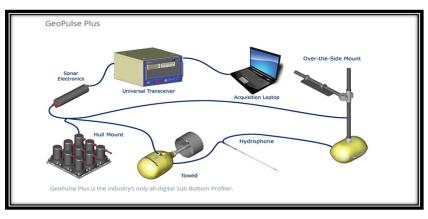
PROGRAM LATIHAN JKR 2021


□ SIDE SCAN SONAR RESULT

PROGRAM LATIHAN JKR 2021

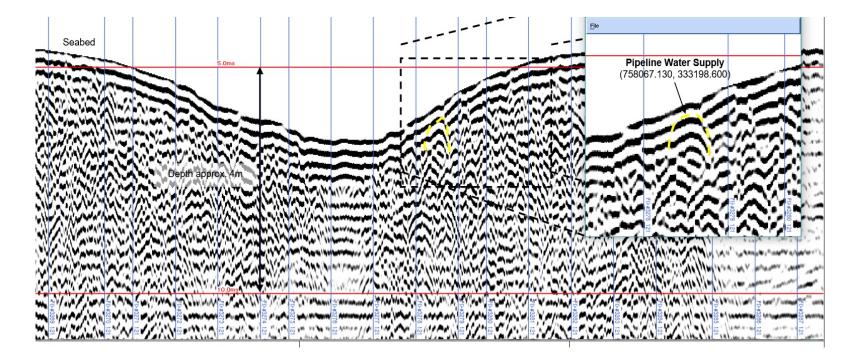

D MULTI BEAM

□ MULTI BEAM : DIFFERENCE BETWEEN SINGLE BEAM & MULTI BEAM


MULTI BEAM	SINGLE BEAM
Wide Coverage	Low Coverage
Large Area	Small Area
High Resolution	Low Resolution
Reduce Ship Survey Timing	Longer Survey Timing
Total Coverage of Bottom (3D)	Spot Height Only
High Accuracy	Low Accuracy

PROGRAM LATIHAN JKR 2021

□ SUB BOTTOM PROFILING



PROGRAM LATIHAN JKR 2021

□ SUB BOTTOM PROFILING RESULT

PROGRAM LATIHAN JKR 2021

DIVIDED INTO 3 CATEGORIES

- 1. PRE SURVEY
- 2. INTERIM SURVEY / PROGRESS SURVEY
- 3. AS-BUILT SURVEY

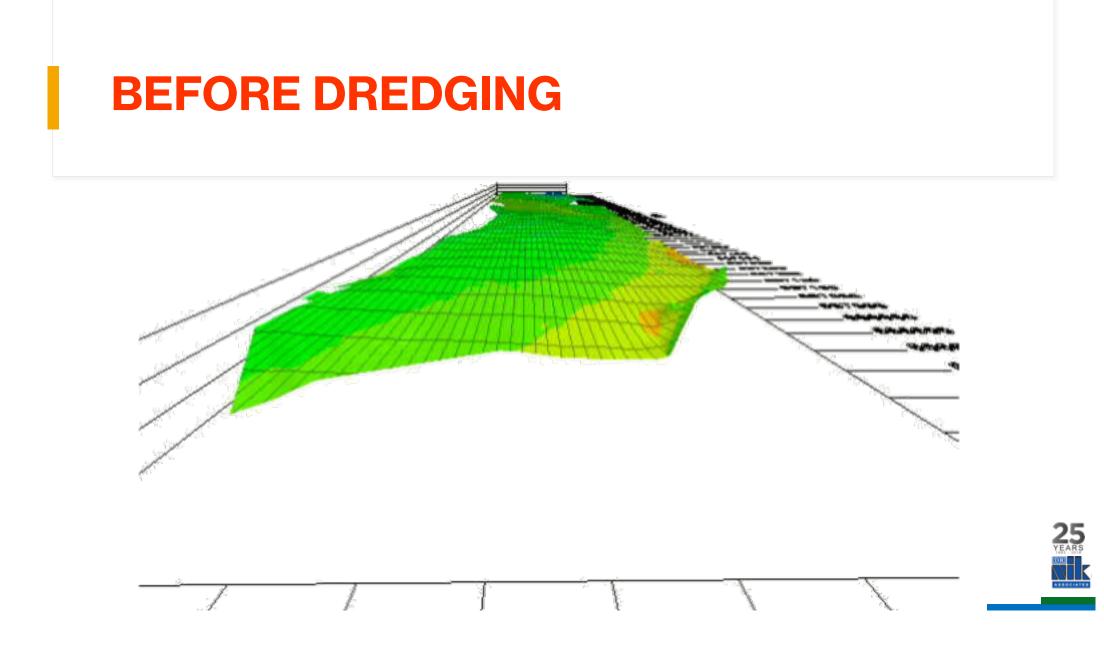
PRE SURVEY

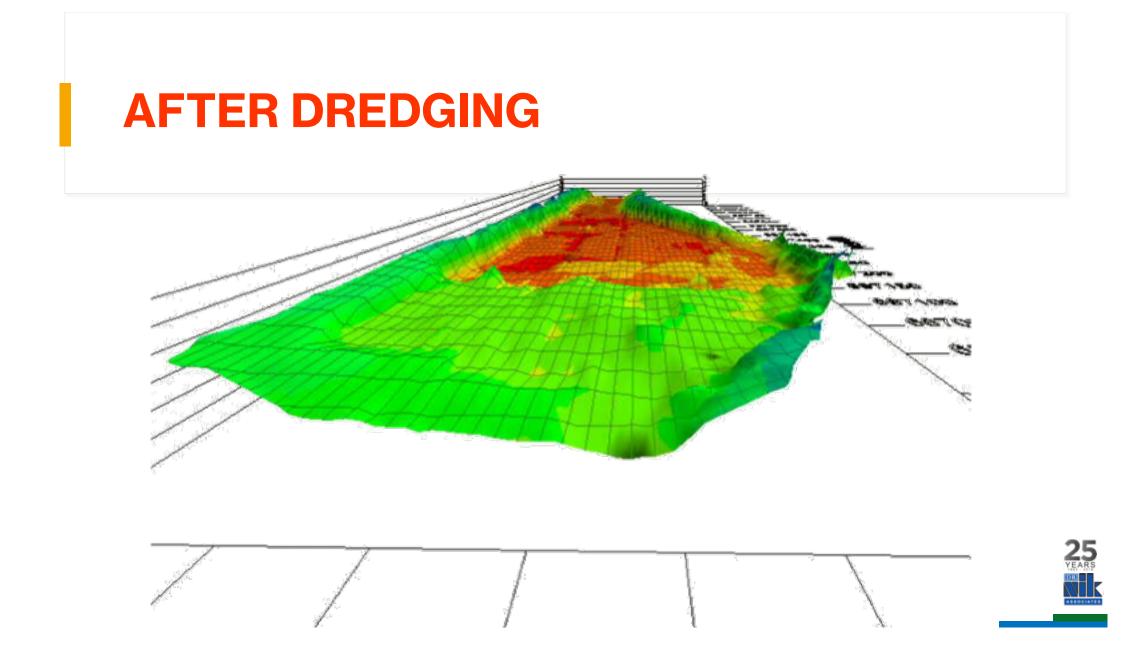
 Latest profile or topographic of sea or riverbed of dredging area.

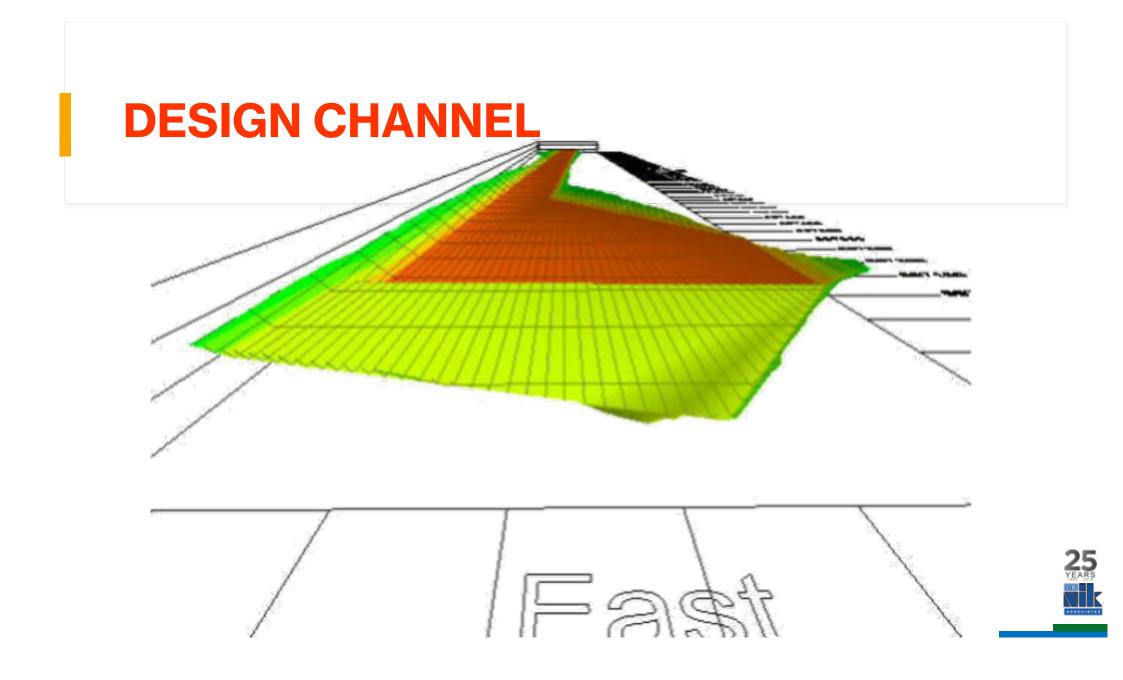
• Determine the total amount of soil to be removed.

Quantities is major contributor to the project evaluation.

Interim / Progress Survey


- Done after dredging works completed at certain agreed distance, chainage or block.
- To check or confirm the dredge depth has reach the design depth.
- Determine the dredged quantities.
- Usually witness by the Client, Consultant and the contractor.
- The survey results are part of interim payment documents.




As-built Survey

- Final survey for handing over the project.
- As an evidence for project's
 - completion.

VIDEO

PROGRAM LATIHAN JKR 2021

PROGRAM LATIHAN JKR 2021