

SEVI - RIGID CONNECTIONS

ANALYSIS AND DESISH

HORTEN MOHD. YOSOF A These presented to the Graduate Committee of Lehigh University in candidaty for the Degree of Lester of Science Civil Engineering

LEHIGH UNIVERSITY

SEMI-RIGID CONNECTIONS Analysis and Design

by Norzan Mohd. Yusof

A Thesis presented to the Graduate Committee of Lehigh University in candidacy for the Degree of Master of Science

in

Civil Engineering

Lehigh University 1986 This thesis is accepted and approved in partial fulfilment of the requirements for the degree of Master of Science.

13 May 1986 date

George C. Driscoll Professor in Charge

Irwin J Kagelman Chairman of the Department of Civil Engineering

Table of Contents

	ABSTRACT	1
	1. INTRODUCTION	2
	2. THEORETICAL ANALYSIS	4
	2.1 STRUCTURE AND MODEL	6
	3. STRUCTR INPUT	8
,	4. TEST RESULTS	10
	4.1 NON-DIMENSIONALIZING	10
	4.2 RESULTS	11
	4.3 VERIFICATION OF RESULTS	14
	5. DISCUSSION	15
	6. CONCLUSIONS	20
	NOMENCLATURE	52
	REFERENCES	53
	VITA	55
	T & de A M	

List of Figures

Figure	6-1:	TYPES OF SEMI-RIGID CONNECTION	25
Figure	6-2:	MOMENT-ROTATION CURVE-SEMI-RIGID	26
0		CONNECTION	
Figure	6-3:	TEST ASSEMBLAGES	27
Figure	6-4:	TEST MODEL	28
Figure	6-5:	NODE AND MEMBER NUMBERING	29
Figure	6-6:	PLASTIC MECHANISM METHOD	30
Figure	6-7:	TEST 2 MOMENT-ROTATION CURVE	31
Figure	6-8:	TEST 2 LOAD-ROTATION CURVE	32
Figure	6-9:	TEST 2 LOAD-DEFLECTION CURVE	33
Figure	6-10:	TEST 5 MOMENT-ROTATION CURVE	34
Figure	6-11:	TEST 5 LOAD-ROTATION CURVE	35
Figure	6-12:	TEST 5 LOAD-DEFLECTION CURVE	36
Figure	6-13:	TEST 9 MOMENT-ROTATION CURVE	37
Figure	6-14:	TEST 9 LOAD-ROTATION CURVE	38
Figure	6-15:	TEST 9 LOAD-DEFLECTION CURVE	39
Figure	6-16:	TEST 10 MOMENT-ROTATION CURVE	40
Figure	6-17:	TEST 10 LOAD-ROTATION CURVE	41
Figure	6-18:	TEST 10 LOAD-DEFLECTION CURVE	42
Figure	6-19:	TEST 16 MOMENT-ROTATION CURVE	43
Figure	6-20:	TEST 16 LOAD-ROTATION CURVE	44
Figure	6-21:	TEST 16 LOAD-DEFLECTION CURVE	45
Figure	6-22:	TEST 20 MOMENT-ROTATION CURVE	46
Figure	6-23:	TEST 20 LOAD-ROTATION CURVE	47
Figure	6-24:	TEST 20 LOAD-DEFLECTION CURVE	48
Figure	6-25:	TEST 22 MOMENT-ROTATION CURVE	49
Figure	6-26:	TEST 22 LOAD-ROTATION CURVE	50
Figure	6-27:	TEST 22 LOAD-DEFLECTION CURVE	51

ABSTRACT

Semi-rigid connections are used in continous frame construction, primarily for lateral load resistance in office or apartment buildings of moderate height. The concept of semi-rigid connections is to achieve economy in design without - sacrificing the safety of the structure in question. At the same time the actual behaviour of the structure, particularly at the joint, can be accurately predicted. A theoretical analysis of the behavior of a top and seat angle connection is carried out by varying the angle size, beam size and column size. Altogether seven cases are analysed. Particular attention will be focussed on the partial restraint afforded by the top and seat angle type of connections. This paper will demonstrate a rigorous analysis of top and seat angle connections using STRUCTR, an application program. The results obtained are compared to an experimental results carried out in 1940's thus verifying the validity of this analysis. Results show that this method underestimate the maximum moment and maximum load obtained through experimental results but is in close agreement with the plastic mechanism method.