Project Monitoring & Performance Reporting

Hit Ratio

Hit Ratio

Used as a measure of achievement against target which have been previously set and a measure of the effectiveness of the contractor's project management

Hit Ratio – Tasks/Activities

Hit Ratio - Critical Activities

Hit Ratio - Deliverables

Hit Ratio

- Hit Ratio Tabulation
 - Planned Quantity (PQ)
 - Actual Quantity (AQ)
 - Hit Ratio = AQ PQ / PQ

Hit Ratio

- Back-up of Hit Ratio Analysis
 - WBS
 - Tasks, Critical Activities,
 Deliverables (BQ Bill Items)
 - Duration
 - Early Date
 - Actual Start Date
 - Planned Progress
 - Actual Progress

Hit Criteria

Criteria 1

 Actual Start Must Not Exceed Late Start

Criteria 2

 Actual Progress Must Equal or More Than Scheduled Progress

Exercise: Hit Ratio

Task	Critical Task	Late Start	Actual Start	Sch%	Act%	C1	C2	Hit
Α	С							
В	NC							
С	С							
D	С							
E	NC							
F	NC							
G	NC							

Hit Ratio Analysis

Project Monitoring & Performance Reporting

Probability

Probability

 To determine probability for the project to complete on time

Probability of project being completed on time

Key Processes

- Identifying project critical path(s)
- Determine task's Optimistic, Most likely, and Pessimistic durations
- Perform PERT analysis
 - T_E is the best estimate of the time required to accomplish a task
 - $T_F = (O + 4M + P) \div 6$
- Calculating Z value
- Convert Z value to probability of project being completed on time, using Areas under Distribution Curve
- Show the probability in Percentage (%)

Exercise: Probability

Critical Activity	4d	6d	5d	7d	7d	9d	Opt (O)	ML (t)	Pes (p)

Z Values & Probability of Completion

Z	Probability	Probability	Z
-2	0.02	0.98	2
-1.5	0.07	0.92	1.5
-1.3	0.1	0.9	1.3
-1.0	0.16	0,84	1
-0.9	0.18	0.82	0.9
-0.8	0.21	0.79	0.8
-0.7	0.24	0.76	0.7
-0.6	0.27	0.73	0.6
-0.5	0.31	0,69	0.5
-0.4	0.34	0,66	0.4
-0.3	0.38	0.62	0.3
-0.2	0.42	0.58	0.2
-0.1	0.46	0.54	0.1
0	0.5	0.5	0

12

Identify Critical Activities (example..)

No	Critical Activities	
	Bridge Over 5g KKK	
1	Preparation Work	66-15
2	Temp Crossing/Platform to/at LHS	
3	Cofferdam at Pier LHS	200-2
4	Working test pile	
5	Load test working pile	20 - 10
6	Install steel pipe At LHS	
7	Boring and cast pile at LHS	300.00
8	Pilecap LHS	35,40
9	Column LHS	88-88
10	Hammerhead and temp. support LHS	
11	Install traveller form LHS	
12	Construct bridge deckLHS	
13	Dismontle form LHS	20.00
14	Install traveller form RHS	
15	Construct bridge deck RHS	
16	Parapet Main Span	25.00
17	Metal railing Main Span	63-56
18	ACBC	
19	ACWC	
20	Pave shoulder	
21	Traffic signs	

Pert Analysis

6		Optimistic Duration	Most Likely Duration	Pessimistic Duration	Mean Duration	Variance	
No	Critical Activities	a	m	ь	t _j =(a+4m+b)/6	$\sigma_{j}^{2} = ((b-a)/6)^{-2}$	
	Bridge Over 5g KKK	490	642	852			
1	Preparation Work	20	24	35	25.17	6.25	
2	Temp Crossing/Platform to/at LHS	63	75	90	75.50	20.25	
3	Cofferdam at Pier LHS	5	7	14	7.83	2.25	
4	Working test pile	4	8	12	8.00	1.78	
5	Load test working pile	5	8	14	8.50	2.25	
6	Install steel pipe At LHS	24	37	48	36.67	16.00	
7	Boring and cast pile at LHS	18	23	36	24.33	9.00	
8	Pilecap LHS	16	23	28	22.67	4.00	
9	Column LH5	24	30	42	31.00	9.00	
10	Hammerhead and temp. support LHS	35	45	60	45.83	17.36	
11	Install traveller form LHS	14	22	28	21.67	5.44	
12	Construct bridge deckLH5	91	104	130	106.17	42.25	
13	Dismantle form LH5	6	8	14	8.67	1.78	
14	Install traveller form RHS	14	22	28	21.67	5.44	
15	Construct bridge deck RHS	91	104	130	106.17	42.25	
16	Parapet Main Span	28	45	60	44.67	28.44	
17	Metal railing Main Span	14	20	28	20.33	5.44	
18	ACBC	4	8	12	8.00	1.78	
19	ACWC	3	8	11	7.67	1.78	
20	Pave shoulder	5	10	14	9.83	2.25	
21	Traffic signs	6	11	18	11.33	4.00	
0.	Total	490	642	852	651.67	229.00	

Probability Calculation

T (Duration Sum From The Mean Duration)=
$$\Sigma$$
 t_j = 651.67
$$\sigma^2 = \Sigma (\sigma_j)^2 = 229.00$$
t (Duration Of The Project) = Σ m = 642.00
$$z = (+ - T) / \sigma = (642 - 651.67) / (SQRT(229)) = -0.64$$

Probability Of The Project Being Completed On Time

25%

Post Review Questionaires (5 minutes)

