

### Short Course on DESIGN OF PRECAST CONCRETE JETTY to EUROCODE 2

17-19 August 20120 Pusat Kecermelangan Kejuruteraan dan Teknologi JKR (CREaTE), Melaka

SHORT COURSE ON:



### **DESIGN OF PRECAST CONCRETE JETTY to EUROCODE 2**

### Introduction

This course intended to introduce the general principles and considerations involved in the design of maritime structures. The main part of the course will focus on the design of jetty structural elements using precast system based on Eurocode. The course begins with the introduction of precast concrete design concepts and requirements, introduction to Eurocodes, and general design requirements of marine structures. A detail design calculations of various jetty components such as deck slabs, beams, pile caps, ramps and stairs will be discussed. Structural design of pile foundations subject to marine loads will also be explained.

### Course objectives/learning outcomes

Upon completion of the course, participants will be able to:

- Identify the basic design criteria of precast systems.
- Describe the design basis, contents and structure of Eurocode.
- Describe the general design principles of maritime structures.
- Design precast reinforced concrete elements of jetty structures using EC2.

### **Course programme**

### Day 1: [Facilitator: Prof. Dr. Ahmad Baharuddin Abd Rahman] Introduction to Precast Concrete System

- Design and construction aspects of precast concrete
- Precast frame stability
- Design of connection: Column to column connection
- -` Design of connection: Beam to column connection

### Day 2: [Facilitator: Ir. Mohamad Salleh Yassin] Introduction to Maritime Structures

- Various types of maritime structures, function and terminology
- Design forces on maritime structures: wind, current, waves, berthing and mooring forces, dead, superimposed and live loads.
- Code of practice and design requirements of maritime structures
- Introduction to Eurocodes and EC2:
- Structure of Eurocode and EC2
- Design basis, safety factor and actions
- Design for safety, serviceability and durability

### Day 3: [Facilitator: Ir. Mohamad Salleh Yassin] Practical Design of Jetty

- Typical jetty layout plans
- Determination of design specification
- Design of precast deck slabs and beams
- Design of precast pile caps and u-shells
- Design of stairs, ramps and pile foundations

### Who should attend?

This short course is intended for young practising civil engineers working in public agencies or private sector, postgraduate students, academicians and consultants who wish to upgrade their knowledge in reinforced concrete design.

### Facilitators' profile

- **Professor Dr. Ahmad Baharuddin Abd Rahman** is a Professor at the School of Civil engineering, Universiti Teknologi Malaysia, specializing in steel design and industrialized building systems. He is actively involved in research project related to steel structures and precast concrete construction.
- Ir. Mohamad Salleh Yassin is a registered professional engineer who has a wide experience in design of concrete structures. He is currently a senior lecturer at the School of Civil Engineering, UTM, specializing in reinforced and prestressed concrete design. He is actively involved in numerous consultancy projects with consulting firms in design projects related to water retaining structures, buildings and bridges.























innovative • entrepreneurial • global

# DOLPHIN



**OUTM** 

- Structure located at the entrance of a locked basin or along side jetty or wharf to absorb the impact force of the vessel or provide mooring facilities
- Constructed in the form of a cluster of closely spaced piles

### **FENDERS**



- Cushion provided on the face of jetty on which the ships come in contact with the jetty.
- Protect the structure in a better way from the abrasion of vessel

innovative • entrepreneurial • global

**UTM** 



# **SLIPWAY**



- A ramp on the shore by which ships or boats can be moved to and from the water.
- Used for building and repairing ships and boats.





### **MOORING / BOLLARD**



**OUTM** 

- The device used to anchor or attach a vessel in a harbour.
- Thick post or port designed to take up pulls up to 350 kN.
- Provided either by single bit or double bit























#### **OUTM Code of Practice and Guidelines** BS 6349-1: 2000 BS 6349-1-1:2013 Maritime Structures - Code of practice for general criteria dards Publicatio BS 6349-1-2: Maritime Works - Code of practice for Maritime works assessments of actions Part 1-1: General - Code of practice for planning and design for operations BS 6349-1-3: 2012 Maritime Works - Code of Practice for BS 6349-2:2010 geotechnical design BS 6349-1-4: 2013 Maritime Works – Code of practice for materials **BSI Standards Publication** BS 6349-3: 2013 Maritime works -Maritime Works - Code of practice for the Part 2: Code of practice for the design of quay walls, jetties and dolphins design of shipyards and sea lock











| <b>OUTM</b><br>Table 2.1: E     | IN 1990                                      | Design working                                                                  | life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design working<br>life category | Indicative design<br>working life<br>(years) | Examples                                                                        | TARSTT - BB us<br>TARSTT - BB us<br>TARSTT - BB us<br>TARST - BB US<br>TAR |
| 1                               | 10                                           | Temporary structures                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                               | 10 to 25                                     | Replaceable structural parts, e.g. gantry girders, bearing                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                               | 15 to 30                                     | Agricultural and similar structures                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                               | 50                                           | Buildings structures and other common structures                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                               | 100                                          | Monumental building structures, bridges, and other civil engineering structures |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| innovative                      | neurial • global                             |                                                                                 | www.utm.my                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                     | Expos                                                 | ure Class                                                                                               |
|---------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| EN 1                | 992-1-1:2004                                          |                                                                                                         |
| Tal                 | ble 4.1: Exposure classes related to<br>with EN 206-1 | environmental conditions in accordance                                                                  |
| Class<br>designatio | Description of the environment                        | Informative examples where exposure classes                                                             |
| 2 Corroci           | n induced by carbonation                              | mayoccar                                                                                                |
| XC1                 | Dry or permanently wet                                | Concrete inside buildings with low air humidity<br>Concrete permanently submerged in water              |
| XC2                 | Wet, rarely dry                                       | Concrete surfaces subject to long-term water<br>contact<br>Many foundations                             |
| XC3                 | Moderate humidity                                     | Concrete inside buildings with moderate or high ai<br>humidity<br>External concrete sheltered from rain |
| XC4                 | Cyclic wet and dry                                    | Concrete surfaces subject to water contact, not<br>within exposure class XC2                            |
| A Corrosie          | n induced by chlorides from sea water                 |                                                                                                         |
| - 00110510          | Exposed to airborne salt but not in direct            | Structures near to or on the coast                                                                      |
| XS1                 | contact with sea water                                |                                                                                                         |
| XS1<br>XS2          | Permanently submerged                                 | Parts of marine structures                                                                              |

| 0                                                    | JTTM<br>REITI TEXNOLOGI MALAYSI                                                                                               |          |                   |                   |        |        | N                 | Na                           | ite                      | eri                                     | ia             | ls     |          |         |        |        |                       |                               |  |  |  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-------------------|--------|--------|-------------------|------------------------------|--------------------------|-----------------------------------------|----------------|--------|----------|---------|--------|--------|-----------------------|-------------------------------|--|--|--|--|--|--|
| EN                                                   | EN 206-1:2000 Concrete<br>Table F.1 — Recommended limiting values for composition and properties of concrete                  |          |                   |                   |        |        |                   |                              |                          |                                         |                |        |          |         |        |        |                       |                               |  |  |  |  |  |  |
|                                                      | No risk of<br>corrosion or<br>attack                                                                                          | Ca       | arbonati<br>corre | on-induc<br>osion | ed     | s      | Chlor<br>iea wate | Exp<br>ide-indu<br>r         | ced con<br>Chlor<br>froi | lasses<br>rosion<br>ide othe<br>n sea w | r than<br>ater | F      | reeze/th | aw atta | ck     | Aggre  | essive cl<br>nvironme | hemical<br>ents               |  |  |  |  |  |  |
|                                                      | X0                                                                                                                            | XC 1     | XC 2              | XC 3              | XC 4   | XS 1   | XS 2              | XS 3                         | XD 1                     | XD 2                                    | XD 3           | XF 1   | XF 2     | XF 3    | XF 4   | XA 1   | XA 2                  | XA 3                          |  |  |  |  |  |  |
| Maximum<br>w/c                                       | -                                                                                                                             | 0,65     | 0,60              | 0,55              | 0,50   | 0,50   | 0,45              | 0,45                         | 0,55                     | 0,55                                    | 0,45           | 0,55   | 0,55     | 0,50    | 0,45   | 0,55   | 0,50                  | 0,45                          |  |  |  |  |  |  |
| Minimum<br>strength<br>class                         | C12/15                                                                                                                        | C20/25   | C25/30            | C30/37            | C30/37 | C30/37 | C35/45            | C35/45                       | C30/37                   | C30/37                                  | C35/45         | C30/37 | C25/30   | C30/37  | C30/37 | C30/37 | C30/37                | C35/45                        |  |  |  |  |  |  |
| Minimum<br>cement<br>content<br>(kg/m <sup>3</sup> ) | -                                                                                                                             | 260      | 280               | 280               | 300    | 300    | 320               | 340                          | 300                      | 300                                     | 320            | 300    | 300      | 320     | 340    | 300    | 320                   | 360                           |  |  |  |  |  |  |
| Minimum air<br>content (%)                           | -                                                                                                                             | -        | -                 | -                 | -      | -      | -                 | -                            | -                        | -                                       | -              | -      | 4,0ª     | 4,0ª    | 4,0ª   | -      | -                     | -                             |  |  |  |  |  |  |
| Other<br>requirements                                | v Aggregate in accordance with<br>EN 12620 with sufficient<br>freezenthmy resistance Sulfate-resisting<br>cement <sup>2</sup> |          |                   |                   |        |        |                   | -resisting<br>t <sup>b</sup> |                          |                                         |                |        |          |         |        |        |                       |                               |  |  |  |  |  |  |
|                                                      |                                                                                                                               |          |                   |                   |        |        |                   |                              |                          |                                         |                |        |          |         |        |        |                       |                               |  |  |  |  |  |  |
|                                                      |                                                                                                                               |          |                   |                   |        |        |                   |                              |                          |                                         |                |        |          |         |        |        |                       |                               |  |  |  |  |  |  |
|                                                      |                                                                                                                               |          |                   |                   |        |        |                   |                              |                          |                                         |                |        |          |         |        |        |                       |                               |  |  |  |  |  |  |
|                                                      |                                                                                                                               |          |                   |                   |        |        |                   |                              |                          |                                         |                |        |          |         |        |        |                       |                               |  |  |  |  |  |  |
| innovative                                           | • entreprer                                                                                                                   | eurial • | global            |                   | _      |        |                   |                              |                          |                                         |                |        |          |         | _      | v      | vww.u                 | tm.my                         |  |  |  |  |  |  |
|                                                      |                                                                                                                               |          |                   |                   |        |        |                   |                              |                          |                                         |                |        |          |         |        |        |                       | motule - entepretentin - Boon |  |  |  |  |  |  |

| UTTM<br>UNITED TOTOLO RALESA |                     |
|------------------------------|---------------------|
| EN 1992-1-1:2004             | Steel reinforcement |

Table C.1: Properties of reinforcement

| Product form                                                  | Bars and de-coiled rods Wire Fabrics |            | Bars and de-coiled rods Wire Fabrics Require<br>quantile |                                           | Requirement or<br>quantile value (%) |                |         |
|---------------------------------------------------------------|--------------------------------------|------------|----------------------------------------------------------|-------------------------------------------|--------------------------------------|----------------|---------|
| Class                                                         | А                                    | В          | с                                                        | А                                         | В                                    | с              | -       |
| Characteristic yield strength $f_{yk}$<br>or $f_{0,2k}$ (MPa) |                                      | 400 to 600 |                                                          |                                           |                                      | 5,0            |         |
| Minimum value of $k = (f_k/f_y)_k$                            | ≥1,05                                | ≥1,08      | ≥1,15<br><1,35                                           | ≥1,05                                     | ≥1,08                                | ≥1,15<br><1,35 | 10,0    |
| Characteristic strain at<br>maximum force, <i>கு</i> (%)      | ≥2,5                                 | ≥5,0       | ≥7,5                                                     | ≥2,5                                      | ≥5,0                                 | ≥7,5           | 10,0    |
| Bendability                                                   | Bend/Rebend test                     |            | -                                                        |                                           |                                      |                |         |
| Shear strength                                                | -                                    |            |                                                          | 0,3 A f <sub>sk</sub> (A is area of wire) |                                      |                | Minimum |

innovative • entrepreneurial • global

| WEREIT TEOROLOG WALATSA                                    | Fire resista            | ance                                                                   |
|------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|
| Appendix E                                                 |                         |                                                                        |
| linimum Periods of Fire Resistance for Elemen              | ats of Structure        |                                                                        |
| [By-law 143(3), 148, 159(1), 163, 214, 21                  | 7(2)]                   |                                                                        |
| ource: , Uniform Building By-Law 1984, International Law B | ook Services, 2003)     |                                                                        |
| PART 2 - Single storey buildi                              | ngs                     |                                                                        |
| Рыгрозе дгонр                                              | Maximum floor area (m²) | Minimum period of fire resistance<br>for elements of structure (hours) |
| (1)                                                        | (2)                     | (3)                                                                    |
| I Small residential                                        | No limit                | 1/2                                                                    |
| II Institutional                                           | 3000                    | 1/2                                                                    |
| III Other residential                                      | 3000                    | 1/2                                                                    |
| IV Office                                                  | 3000                    | 1/2                                                                    |
|                                                            | No limit                | 1                                                                      |
| V Shop                                                     | 2000                    | 1/2                                                                    |
|                                                            | 3000                    | 1                                                                      |
|                                                            | 1NO mini                | 2                                                                      |
| VI Factory                                                 | 2000                    | 1/2                                                                    |
|                                                            | No limit                | 1                                                                      |
|                                                            |                         | 2                                                                      |
| VII Assembly                                               | 3000<br>No limit        | 1                                                                      |
| 177 Stanson January                                        | 500                     | 1                                                                      |
| v1 Storage and general                                     | 1000                    | 72                                                                     |
|                                                            | 3000                    | 2                                                                      |
|                                                            | No limit                | 2                                                                      |



# The importance of hydraulic actions on open piled jetty

| Type of forces                        | Level of importance                   |
|---------------------------------------|---------------------------------------|
| Horizontal wave load                  | Frequent but moderate significance    |
| Wave overtopping loads                | Usually ignored but can be dangerous  |
| Uplift forces                         | Seldom predicted, no reliable methods |
| Wave slam or impact forces            | Not well predicted                    |
| Vessel mooring loads                  | Significant                           |
| Vessel berthing load                  | May be critical                       |
| Bed scour                             | Only local and for limited cases      |
| innovative • entrepreneurial • global | www.utm.my                            |

**UNTER UTTM** 

















### **The Eurocodes**

| The Eurocode Family (58 all together) |            |                                                   |  |  |  |  |
|---------------------------------------|------------|---------------------------------------------------|--|--|--|--|
| EN 1990                               | Eurocode   | Basis of structural design                        |  |  |  |  |
| EN 1991                               | Eurocode 1 | Actions on structures                             |  |  |  |  |
| EN 1992                               | Eurocode 2 | Design of concrete structures                     |  |  |  |  |
| EN 1993                               | Eurocode 3 | Design of steel structures                        |  |  |  |  |
| EN 1994                               | Eurocode 4 | Design of composite steel and concrete structures |  |  |  |  |
| EN 1995                               | Eurocode 5 | Design of timber structures                       |  |  |  |  |
| EN 1996                               | Eurocode 6 | Design of masonry structures                      |  |  |  |  |
| EN 1997                               | Eurocode 7 | Geotechnical design                               |  |  |  |  |
| EN 1998                               | Eurocode 8 | Design of structures for earthquake resistance    |  |  |  |  |
| EN 1999                               | Eurocode 9 | Design of aluminium alloy structures              |  |  |  |  |
|                                       |            |                                                   |  |  |  |  |

innovative • entrepreneurial • global



| <b>UTTM</b><br>UNESET TRACION RALEYS |                                          |   |
|--------------------------------------|------------------------------------------|---|
| EUROCODE 1 : A                       | CTIONS ON STRUCTURES                     |   |
| EN 1991-1-1                          | Densities, self weight and imposed loads |   |
| EN 1991-1-2                          | Actions on structures exposed to fire    |   |
| EN 1991-1-3                          | Snow loads                               |   |
| EN 1991-1-4                          | Wind loads                               |   |
| EN 1991-1-5                          | Thermal loads                            |   |
| EN 1991-1-6                          | Actions during execution                 |   |
| EN 1991-1-7                          | Accidental actions                       |   |
| EN 1991-2                            | Traffic loads on bridges                 |   |
| EN 1991-3                            | Actions induced by cranes and machinery  | / |
| EN 1991-4                            | Silos and tanks                          |   |
|                                      |                                          |   |

| <b>UTTM</b><br>UNDER TROJUG MARK |                                               |
|----------------------------------|-----------------------------------------------|
| EUROCODE 2 :                     | DESIGN OF CONCRETE STRUCTURES                 |
| EN 1992-1-1                      | General rules and rules for buildings         |
| EN 1992-1-2                      | General rules – Structural fire design        |
| EN 1992-2                        | Concrete bridges – design and detailing rules |
| EN 1992-3                        | Liquid retaining and containment structures   |
|                                  |                                               |
|                                  |                                               |











| <b>UTTM</b><br>UNE BALLER                                       |           | EN 1990                                                     |
|-----------------------------------------------------------------|-----------|-------------------------------------------------------------|
|                                                                 | Contents  |                                                             |
| STANDARD                                                        | Section 1 | General                                                     |
|                                                                 | Section 2 | Requirements                                                |
|                                                                 | Section 3 | Principles of Limit State Design                            |
| FUROCODE BASIS OF STRUCTURAL                                    | Section 4 | Basic variables                                             |
| DESIGN                                                          | Section 5 | Structural analysis and design assisted by testing          |
|                                                                 | Section 6 | Verification by the partial factor method                   |
|                                                                 | Annex A1  | Application for buildings                                   |
|                                                                 | Annex A2  | Application for bridges                                     |
| ICS: 91.010.30<br>Description auronice, bank, structural design | Annex B   | Management of structural reliability for construction works |
| FOR SALE WITHIN MALAYSIA ONLY                                   | Annex C   | Basis for partial factor design and reliability analysis    |
| DEPARTMENT OF STANDARDS MALAYSIA                                | Annex D   | Design assisted by testing                                  |
| innovative ● entrepreneurial ● global                           |           | www.utm.my                                                  |





(4) EN 1990 is applicable for the structural appraisal of existing construction, in developing the design of repairs and alterations or in assessing changes of use.

innovative • entrepreneurial • global





- the construction materials and products are used as specified in EN 1990 or in EN 1991 to EN 1999 or in the relevant execution standards, or reference material or product specifications;
- the structure will be adequately maintained;
- The structure will be used in accordance with the design assumptions.







|                                 | 2                                            | .3 Design working life                                                          |                                      |
|---------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|
| Design working<br>life category | Indicative design<br>working life<br>(years) | Examples                                                                        | Terrer Air Bendarmen<br>Terrer Bagus |
| 1                               | 10                                           | Temporary structures                                                            |                                      |
| 2                               | 10 to 25                                     | Replaceable structural parts, e.g. gantry girders, bearing                      |                                      |
| 3                               | 15 to 30                                     | Agricultural and similar structures                                             |                                      |
| 4                               | 50                                           | Buildings structures and other common structures                                | B                                    |
| 5                               | 100                                          | Monumental building structures, bridges, and other civil engineering structures |                                      |
|                                 |                                              |                                                                                 |                                      |
| innovative • entreprei          | neurial • global                             |                                                                                 | www.utm.my                           |

| <b>BIITM</b>                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNITED TRACES OF ALLERA                                                                                                                              |
|                                                                                                                                                      |
| Section 3 : Principle of limit states design                                                                                                         |
| 3.2 Design situations                                                                                                                                |
| Persistent : - Design situation during a period of the<br>same order as he design working life of<br>the structure.<br>- Represents normal use       |
| Transient: - Design situation during a period much<br>shorter than the design working life<br>of the structure.<br>- e.g. during execution or repair |
| innovative • entrepreneurial • global www.utm.my                                                                                                     |

| <b>UTTM</b>                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accidental: - Design situation involving exceptional conditions for structure.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - e.g. Fire, explosion, impact etc                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Seismic: - Design situation involving exceptional<br>conditions for structure during seismic<br>event. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| incustion - entrepreneutial - alabat                                                                   | in the second se |









#### Recommended values of $\psi$ factors for buildings

| Action                                                    | $\psi_0$ | $\psi_1$ | $\psi_2$ |  |  |
|-----------------------------------------------------------|----------|----------|----------|--|--|
| Imposed loads in buildings (see EN 1991-1-1)              |          |          |          |  |  |
| Category A: domestic, residential areas                   | 0.7      | 0.5      | 0.3      |  |  |
| Category B: office areas                                  | 0.7      | 0.5      | 0.3      |  |  |
| Category C: congregation areas                            | 0.7      | 0.7      | 0.6      |  |  |
| Category D: shopping areas                                | 0.7      | 0.7      | 0.6      |  |  |
| Category E: storage areas                                 | 1.0      | 0.9      | 0.8      |  |  |
| Category F: traffic area, vehicle weight < 30 kN          | 0.7      | 0.7      | 0.6      |  |  |
| Category G: traffic area, 30 kN < vehicle weight < 160 kN | 0.7      | 0.5      | 0.3      |  |  |
| Category H: roof (see EN 1991-1-1: Cl. 3.3.2)             | 0.7      | 0        | 0        |  |  |
| Wind loads on buildings (see EN 1991-1-4)                 | 0.5      | 0.7      | 0.7      |  |  |
| Temperature (non-fire) in buildings (see EN 1991-1-5)     | 0.6      | 0.7      | 0.7      |  |  |







### Table A1.2(B) : Design values of actions- Ultimate limit states for persistent and transient design situation

| Combination  | Permaner                                   | nt actions                                  | Leading                         | Accompany<br>acti                                              | ing variable<br>ons                                   |
|--------------|--------------------------------------------|---------------------------------------------|---------------------------------|----------------------------------------------------------------|-------------------------------------------------------|
| Expression   | Unfavourable                               | Favourable                                  | actions                         | Main (if<br>any)                                               | Others                                                |
| Exp. (6.10)  | $\gamma_{Gj,sup}  \boldsymbol{G}_{kj,sup}$ | $\gamma_{Gj,inf}  \boldsymbol{G}_{k,j,inf}$ | $\gamma_{Q,1} \mathbf{Q}_{k,1}$ |                                                                | $\gamma_{Q,i}\psi_{0,i}\boldsymbol{Q}_{k,i}$          |
| Exp. (6.10a) | $\gamma_{Gj,sup}$ $G_{kj,sup}$             | $\gamma_{Gj,inf} \mathbf{G}_{k,j,inf}$      |                                 | $\gamma_{\textit{Q},1}\psi_{\textit{0},1}\boldsymbol{Q}_{k,1}$ | $\gamma_{\textit{Q},i}\psi_{0,i}\boldsymbol{Q}_{k,i}$ |
| Exp. (6.10b) | ξγ <sub>Gj,sup</sub> G <sub>kj,sup</sub>   | $\gamma_{Gj,inf}  \boldsymbol{G}_{k,j,inf}$ | $\gamma_{Q,1} Q_{k,1}$          |                                                                | $\gamma_{Q,i}\psi_{0,i}Q_{k,i}$                       |

Notes:

**OUTM** 

- 1. The choice between 6.10, or 6.10a and 6.10b will be in the National annex.
- 2. The  $\gamma$  and  $\xi$  values may be set by the National annex. The following values for  $\gamma$ and  $\xi$  are recommended when using 6.10, 6.10a and 6.10b.  $\gamma_{Gj,sup} = 1.35$ ,  $\gamma_{Gj,inf} = 1.0 \gamma_{Q,1} = 1.50$  where Unfavourable (0 where favourable)

  - = 1.50 where Unfavourable (0 where favourable) ξ = 0.85 γ<sub>Q,i</sub>

UTM

#### Design values of actions, ultimate limit state-persistent and transient design situations

| Combination<br>Expression | Permanent act              | tions      | Leading<br>variable | Accompanyi           | ing variable actions     |
|---------------------------|----------------------------|------------|---------------------|----------------------|--------------------------|
|                           | Unfavourable               | Favourable | actions             | Main (if<br>any)     | Others                   |
| Exp. (6.10)               | 1.35 <i>G</i> <sub>k</sub> | $1.0G_k$   | $1.5Q_k$            |                      | $1.5\psi_{0,i}Q_{k,i}$   |
| Exp. (6.10a)              | 1.35 <i>G</i> <sub>k</sub> | $1.0G_k$   |                     | $1.5 \psi_{0,1} Q_k$ | $1.5 \psi_{0,i} Q_{k,i}$ |
| Exp. (6.10b)              | 0.925x1.35G <sub>k</sub>   | $1.0G_k$   | $1.5Q_k$            |                      | $1.5\psi_{0,i}Q_{k,i}$   |

Note:

1. Design for either Exp.(6.10) or the less favourable of Exp. (6.10a) and (6.10b)

2. The terms favorable and unfavorable refer to the effect of the action on the design situation under consideration. For example, if a beam, continuous over several spans, is to be designed for largest sagging bending moment it will have to sustain any action that has the effect of increasing the bending moment will be considered unfavorable whilst any action that reduces the bending moment will be considered to be favourable.

innovative • entrepreneurial • global

| Combination         | Permanent                  | actions, G <sub>d</sub>     | Variable actions, <b>Q</b> <sub>d</sub> |                                                 |  |
|---------------------|----------------------------|-----------------------------|-----------------------------------------|-------------------------------------------------|--|
|                     | Unfavourable               | Favourable                  | Leading                                 | Others                                          |  |
| haracteristic       | <b>G</b> <sub>kj,sup</sub> | <b>G</b> <sub>k,j,inf</sub> | <b>Q</b> <sub>k,1</sub>                 | $\psi_{0,i} \mathbf{Q}_{k,i}$                   |  |
| requent             | <b>G</b> <sub>kj,sup</sub> | <b>G</b> <sub>k,j,inf</sub> | $\psi_{1,1} \mathbf{Q}_{\mathbf{k},1}$  | $\psi_{2,i} Q_{k,i}$                            |  |
| Quasi-<br>Dermanent | <b>G</b> <sub>kj,sup</sub> | $\boldsymbol{G}_{k,j,inf}$  | $\psi_{2,1} Q_{k,1}$                    | <i>ψ</i> <sub>2,i</sub> <b>Q</b> <sub>k,i</sub> |  |

| UTTM<br>UNITEST TENDOG MARSA |                           |                           |                     |                                       |                                       |
|------------------------------|---------------------------|---------------------------|---------------------|---------------------------------------|---------------------------------------|
| D                            | esign values o            | of actions, s             | servicea            | bility limit :                        | states                                |
|                              | Permanent actions         |                           | Variable actions    |                                       |                                       |
| Combination                  | Unfavourable              | Favourable                | Leading             | Others                                | Example of use                        |
| Characteristic               | 1.0 <i>G</i> <sub>k</sub> | $1.0G_{\rm k}$            | $Q_{k,1}$           | $\psi_{0,i}Q_{k,i}$                   |                                       |
| Frequent                     | 1.0 <i>G</i> <sub>k</sub> | 1.0 <i>G</i> <sub>k</sub> | $\psi_{1,1}Q_{k,1}$ | $\psi_{2,1}Q_{\mathrm{k},\mathrm{i}}$ | Cracking –<br>prestressed<br>concrete |
| Quasi-permanent              | $1.0G_k$                  | $1.0G_k$                  | $\psi_{2,1}Q_{k,1}$ | $\psi_{2,1}Q_{\mathrm{k},\mathrm{i}}$ | Deflection                            |