

ACHIEVING SUCCESS IN CONSTRUCTION PROJECT THROUGH INDUSTRIAL REVOLUTION 4.0

Ir. Dr. Hj. ZARABIZAN BIN Hj. ZAKARIA

CONTENTS

- 1. Introduction
- 2. Literature Review
 - Project Success
 - History of IR 4.0
- 3. Tipping Point & Impact IR 4.0
- 4. The Importance of IR 4.0 in Construction
- 5. Achieving Project Success via IR 4.0
- 6. Conclusion

1. INTRODUCTION

Project Output - Time

- Cost

- Quality

Traditional Method vs Robotic

Challenge & Outcome Reality

2. LITERATURE REVIEW

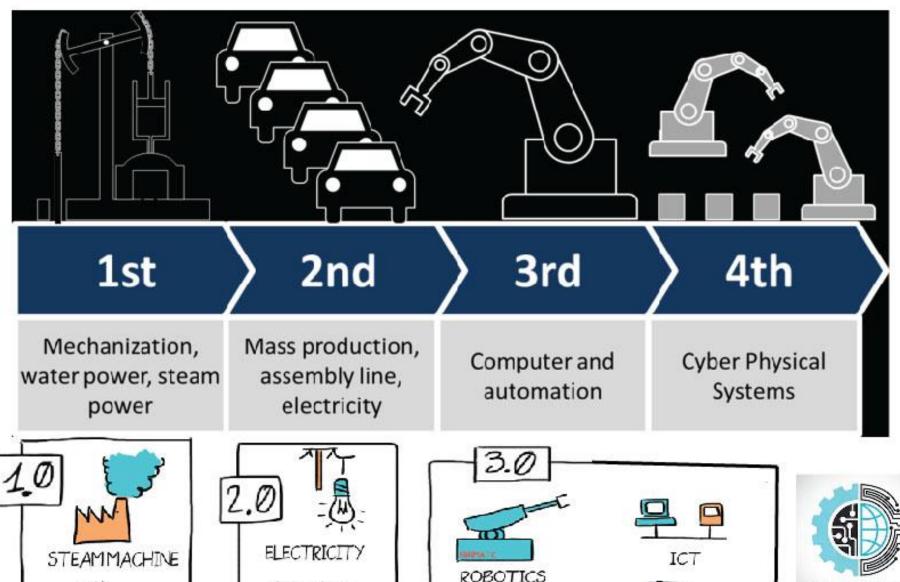
Project Success

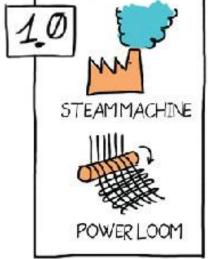
Technical Validity

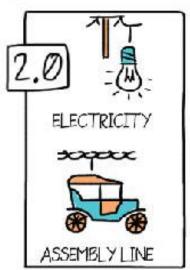
Organizational Validity

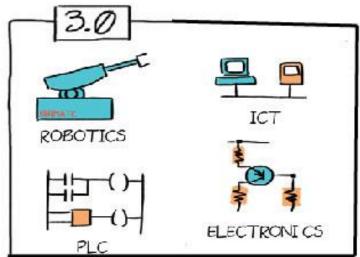
Organizational Effectiveness

Criteria used for measuring Project Success in Construction


Criteria	Rank
Meets client's requirements	1
Completed within schedule	2
Completed within budget	3
Meets organisational objectives	4
Yields business and other benefits	5
Causes minimal business disruption	6
Meets quality and safety standards	7
Other criteria	8


Source: White and Fortune


The critical success factors from the 10 top effective factors in construction project


No.	Critical Factors	% Weight
1	Technical and economic assessment of the project required resources	14.5
2	Experience and executive records of the project manager	10.2
3	Project strategic planning	8.8
4	The executive experience of the contractor team about the project subject	6.5
5	Ability of on-time decision making (employer's agent in project)	6.3
6	Project control management	6.1
7	Prioritization of purchasing the needed items considering the project schedule	5.0
8	Mechanism of forming an experienced technical-legal team at the time of contract	4.6
9	Authorization in Financial decision makings and cost control considering project type and size	3.7
10	Mechanism of financial payment in relation to the project commitments and Plan	2.9

HISTORY IR 4.0

@RD_Anibal

PREDICTIVE MAINT.

IoT

TRACEABILITY

BIGDATA

SIMULATION

3D PRINTING

CLOUD COMPUTING

C.P.S.

CIBERSECURITY

COLLAB. ROB.

3. TIPPING POINT & IMPACT IR 4.0

TIPPING POINT

A World Economic Forum report published in September 2015 identified 21 tipping points – moments when specific technological shifts hit mainstream society – that will shape our future digital and hyper-connected world

Source: World Economic Forum, Deep Shift – Technology Tipping Paints and Societal Impact, Survey Report, Global Agenda Council on the Future of Software and Society, September 2015.

10% of people wearing clothes connected to the internet	91.2
90% of people having unlimited and free (advertising-supported) storage	91.0
1 trillion sensors connected to the internet	89.2
The first robotic pharmacist in the US	86.5
10% of reading glasses connected to the internet	85.5
80% of people with a digital presence on the internet	84.4
The first 3D-printed car in production	84.1
The first government to replace its cansus with big-data sources	82.9
The first implantable mobile phone available commercially	81.7
5% of consumer products printed in 3D	81.1
90% of the population using smartphones	80.7
90% of the population with regular access to the internet	78,8
Driverless cars equaling 10% of all cars on US roads	78.2
The first transplant of a SD-printed liver	76.4
30% of corporate audits performed by AI	75.4
Tax collected for the first time by a government via a blockchain	73.1
Over 50% of internet traffic to homes for appliances and devices	69.9
Globally more trips/journeys via car sharing than in private cars	67.2
The first city with more than 50,000 people and no traffic lights	63.7
10% of global gross domestic product stored on blockchain technology	57.9
The first Al machine on a corporate board of directors	45.2

Source: Deep Shift - Technology Tipping Points and Societal Impact, Global Agenda Council on the Future of Software and Society, World Economic Forum, September 2015.

Economic

IMPACT

IR.40

- Growth Employment
- The Nature of Work

The Individual

Identity, Morality & Ethics -

Human Connection -

Managing Public & -

Private Information

Business

- Consumer Expectations
- Data-Enhanced Products
- Collaborative Innovation
- New Operating Models

Society

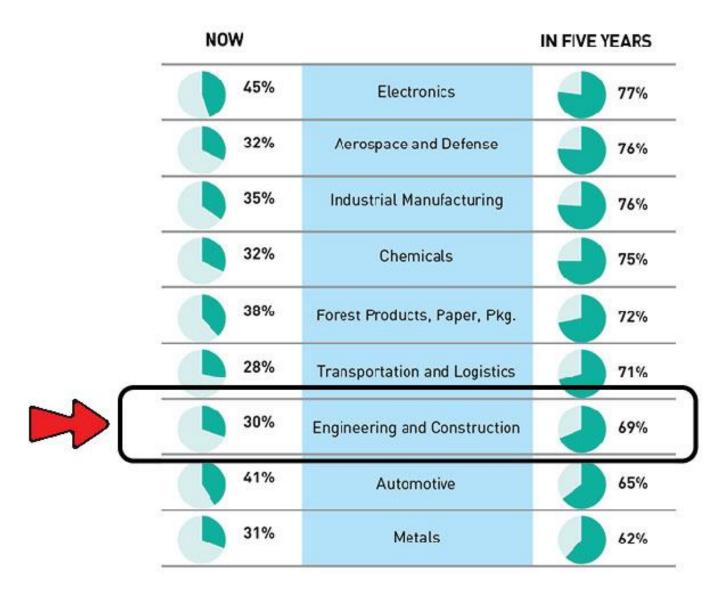
Inequality & the Middle Class -

Community -

National & Global

- Governments
- Countries, Regions & Cities

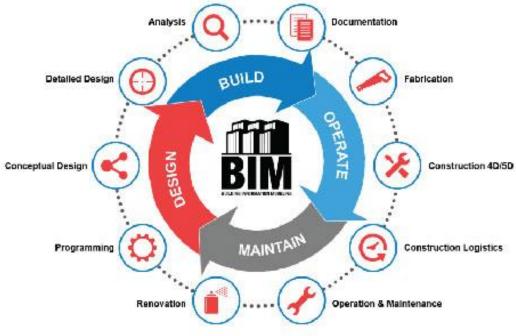
S - Governmen

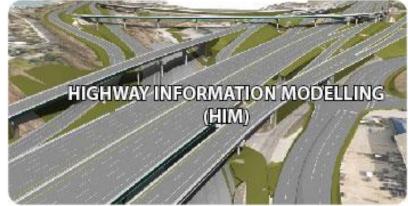

4. THE IMPORTANCE OF IR 4.0 IN CONSTRUCTION

Industry 4.0, also known as the Fourth Industrial Revolution, is based on the idea of automation and digitalisation of production processes, leading to 'smart manufacturing'.

The fourth industrial revolution, or 'Industry 4.0', will see construction coming in line with more digitally developed industries.

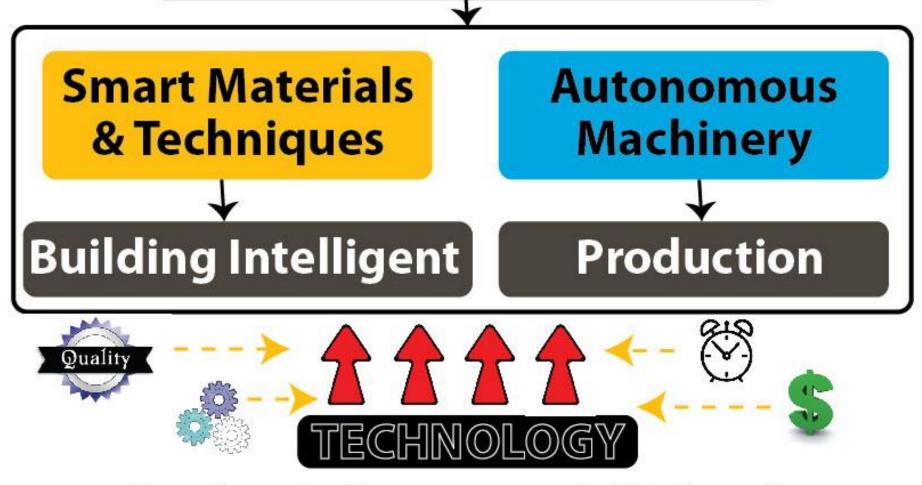
This will revolutionise not only how physical structures are designed, built and maintained, but also how they are subsequently used.


Exhibit 1: Adoption of Industry 4.0, by Sector



At a global level, example practice that is helping to define what industry improvements are possible in the here and now through available digital tools and practices is:-

DESIGN TECHNOLOGY



5. ACHIEVING PROJECT SUCCESS VIA IR 4.0

Digitally Develop Industry

Design & Construct & Maintain

6. CONCLUSION

- Preparing the right ecosystem
- Education & skills required
- Interoperability & standards
- Role of technology will be at the forefront

TRANSFORMATIONAL NEEDS

IR 4.0

Resource Focused
Labour-Intensive
Require Control
Vertical
Mass Production
Proximity is important
Rigid

Knowledge-Intensive
High Skill Talent
Required Collaboration
Horizontal Trust Collaboration
Mass Collaboration
Location less significant
Flexible

