wind energy

unit perunding kecekapan tenaga elektrik cawangan kejuruteraan elektrik jkr malaysia

Contents

History of Wind Energy

Wind Power fundamental

Wind energy conversion technology

Wind energy **potential in Malaysia**

History of Wind Energy

Ancient wind energy system

Harvesting wind power is not a new idea
 Ancient civilisation used wind power for sailing, wind mill and wind pump – 1st recorded wind mill in 7th Century in Persia

- 1,000 years old Vertical-axis windmills in Iran
- Sails connected to a **vertical shaft** connected to a grinding stone
- Used for milling grain for flour

Middle ages wind energy system

Horizontal-Axis Wind-Mill: sails connected to a horizontal shaft on a tower encasing gears and axles for translating horizontal into rotational motion

Evolution of wind energy technology

7th century Persian windmills

Middle ages windmill in Europe

1888 – wind turbine to produce electricity, 12 kW (USA)

7.5 MW

Modern era wind energy technology

Off shore wind farm Vertical axis wind turbine

• Modern era wind energy technology

- Scale increase
- Commercialization
- Grid integration
- Economics
- Environmental benefits

Wind power fundamental

Origin of Wind

Wind – atmospheric air in motion

Energy source

Solar radiation differentially absorbed by earth surface converted through convective processes due to temperature differences to air motion **Approximately** 1%-2% of the incident solar irradiation is converted into wind

Types of wind

Geostrophic wind

direction and speed are determined by a balance of the pressure-gradient force and the force due to the **earth's rotation**.

Extreme wind

- storm
- tornadoes
- thyphoon
- hurricane

Regional/Local wind

the prevailing pattern of easterly surface **winds** found in the tropics towards the Earth's equator

Mountain wind

a breeze of diurnal period depending on the **unevenness of land surfaces** and blowing down the slope by night

Fundamental Equation

Wind variation with time

- Inter annual > 1 year variation
- Annual seasonal or monthly
- Diurnal daily
- Short term –

Wind power depends on:

- Amount of air (volume)
- Speed of air (velocity)
- Mass of air and
- Air density
- Wind direction

$$KE = \frac{1}{2}mv^2$$

Wind Power

$$P = \frac{1}{2}\rho A v^3$$

where:

m is the air mass (kg) v is the air velocity (m/s)A is the rotor swept area (m^2) ρ is air density (kg/m^3)

Pwind turbulance & gust A

Power coefficient of a Wind Turbine

Power Coefficient, **Cp**, is the ratio of power extracted by the turbine (P_T) to the total contained in the wind resource (P_W)

 $C_p = \frac{P_T}{P_W}$

C_P of a Wind turbine is called **Betz Limit** at **0.59**

Typical power curve of a wind turbine

storm protection shutdown

Lift & Drag forces

12

Wind energy conversion technology

Components

Anemometer & wind vane

14

Economy

16

Investment cost (RM/kW)

Onshore

- RM6,500-9,500/kW Offshore
- RM12,500–19,000/kW
 Solar PV Grid connected
 RM5,000 /kWp

Global wind power installation

Country	Installed capacity (GW)
China	176.7
USA	84.3
Germany	52.9
India	32
Spain	23
United Kingdom	16.2
Canada	12.1
France	12.6
Denmark	5.3
Brazil	12.3
Italy	9.4
Sweden	6.5
Poland	5.8
Australia	4.7
Turkey	6.5
Portugal	5.3

Wind energy potential in

dalaysia

PULAU PERHENTIAN, TERENGGANU

Malaysia is located at mean low wind speed region Area in Kudat, Sabah show's some potential and mean wind speed can reach slightly above 5 m/s 20

Wind energy assessment

A study was conducted at
10 meteorological stations.
Data was recorded for 10
years (1998 – 2008)
Requires further studies on
low wind speed turbine

Wind power potential at JKR

Wind speed (Frequency distribution) at JKR (Blok B)

Wind turbine system in Malaysia

	System Capacity	Current Status
Pulau Layang layang, Sabah (2003)	Wind : 150 kW Data on other components not available	Not function
Teluk Melano, Sarawak Bario, Sarawak Ranau, Sabah (2008)	Wind : 4 x 2.5 kW PV : 1.8 kWp Genset : 15 kVA	Not function
Pulau Perhentian, Terengganu (2007)	Wind : 2 x 100 kW PV : 100 kWp Genset : 200 kW	Only PV & genset function

