

Asian Institute of Technology Bengkok Thelland

UNDER - REAMED BORED PILES IN BANGKOK CLAY

H. M. Abdul Aziz bin K. M. Hanifah

UNDER-REAMED BORED PILES IN BANGKOK CLAY

by

H. M. Abdul Aziz bin K. M. Hanifah

A thesis submitted in partial fulfillment of the requirement for the degree of Master of Engineering

Examination Committee : Prof. A.S. Balasubramaniam (Chairman) Dr. Giovanni Rantucci (Co-Adviser) Dr. Noppadol Phienweja

H. M. Abdul Aziz bin K. M. Hanifah

Nationality	:	Malaysian
Previous Degree	:	B. Sc (Hons) Civil Engineering
		University of Leeds, England
Scholarship Donor	:	US-ASEAN

Asian Institute of Technology Bangkok, Thailand April 1988

ABSTRACT

This thesis deals with (1) the development of an underreamer and the construction of under-reamed bored piles in the weathered, soft and stiff clay layers of Bangkok subsoil, (2) load-testing the test piles to failure and (3) to check the increase in ultimate load of the under-reamed piles in the different layers.

The results show that successful under-reams can be constructed in all the clay layers with the under-reamer developed by the author. In the soft clay, the end-bearing load is increased by 3 times when the base diameter is enlarged to 1.7 times the shaft diameter. In the weathered and stiff clay layers, the increase is 3-6 times when the base is enlarged to 2-2.2 times the shaft diameter. The contribution of end-bearing to the ultimate carrying capacity is increased from 10% to 24% in the soft clay and from 18% to 42-60% in the stiff clay.

The total stress method and the Dutch Cone test can be used to predict the ultimate carrying capacity of straight and under-reamed bored piles in Bangkok Clay.

The results from the under-reamed bored piles are compared with the corresponding results from the granular piles. The under-reamed bored piles thus have great potentials especially in embankment road designs and light structures.

TABLE OF CONTENTS

Chapter	Title	Page
Title	Page	i
Abstra		ii
	ledgements	iii
	of Contents	iv
I INTROD	UCTION	1
-	General	1
	Purpose Of Research	1
	TURE REVIEW	3
	Introduction	
2.2.	Sequence of Bored Pile Construction	3
	2.2.1. Methods of Excavating the Hole	3
	(a) Piles constructed in unsupported	-
	boreholes	3
	(b) Piles constructed under casing	
	protection	3
	(c) Piles constructed under bentonite	4
	2.2.2. Methods Of Cleaning the Hole	4
	(a) Manual cleaning	4
	(b) Cleaning by bailing buckets	4
	(c) Cleaning by using suction pump and air-lift	
	2.2.3. Methods Of Placing Concrete	4
	(a) Concrete in dry boreholes	4
	(b) Concrete under compressed air	5
	(c) Concrete under water or bentonite	5
	slurry	
	(d) Pumped concrete	5
2.3.	Method of Estimating Ultimate Bearing	0
	Capacity of Piles in Cohesive Soils	6
	2.3.1. Ultimate Load from Static Formulas	6
	(a) Point resistance	7
	(b) Shaft resistance	8
	2.3.2. Ultimate Load from Dutch Cone Tests	9
	2.3.3. Ultimate Load from Pile load Tests	11
	(a) Failure criteria	11
	(b) Types of load test	12
	(1) Maintained Load Test	12
	(2) Constant Rate of Penetration	
	Test	13
	(3) Method of Equilibrium	14

III	EXPE	RIMENTAL INVESTIGATION	16
		Location of Test Site	16
		Experimental Program	16
		Design of Under-reamer	16
		Installation of Test Piles	18
		3.4.1. Boring	19
		3.4.2. Under-reaming	19
		(a) Dry method	19
		(b) Wet method	20
		3.4.3. Reinforcement	21
		3.4.4. Concreting	21
		(a) Concrete mix design	21
		(b) Placing of concrete	22
	3. 5.	Pile Load Test	22
		3.5.1. Preparation of Pile Head	23
		3.5.2. Loading Arrangements	23
		3.5.3. Loading Procedure	23
		3.5.4. Measurement of Settlement	23
	3.6.	Integrity Test	24
	3.7.	Extraction of Piles	24
* **		NELETAN IND STAGUAGTAN AD SEAM DE	
IV		NTATION AND DISCUSSION OF RESULTS	25
		Soil Profile	25
		Concrete Mix Design Extracted Test Piles	25
	4. 3.	4.3.1. Piles Constructed in the Weathered	26
		Clay	26
		4.3.2. Piles Constructed in the Soft Clay	20
	4.4.	Load-Settlement Relationship	27
		4.4.1. Straight-sided Piles	28
		4. 4. 2. Under-reamed Piles	28
	4. 5.	Interpretation of Ultimate Load	28
		Effect of Under-reams on Bearing Capacity	30
		4.6.1. In the Weathered Clay	31
		4.6.2. In the Soft Clay	32
		4.6.3. In the Stiff Clay	33
	4.7.	Comparison of Measured and Predicted Ultimate	55
		Loads	34
		4.7.1. Total Stress Analysis	34
		4.7.2. Dutch Cone Test	36
	4.8.	Comparison of Ultimate Loads with Granular	
		Piles	38
		Seismic Test Results	39
	4.10	Construction Problems	39
V	CONCL	USIONS	42
	e e no b		46
VI	RECOM	MENDATIONS FOR FURTHER STUDIES	44

I INTRODUCTION

1.1. General

The subsoil in the Bangkok area consists of a thick deposit of marine clays to an average depth of about 20 m. The upper 10 m consists of very highly compressible, soft to medium clay overlying another 10 m of medium to stiff clay (MUKTABHANT et al, 1967).

It is therefore common in Bangkok for foundations of high-rise structures and bridges to be supported on piles. The use of bored cast in-situ piles in Bangkok was introduced in the sixties due to problems of transportation and vibration caused during driving of precast piles. Since then, large diameter bored piles have been used in the first and second sand layers to support the foundations of highrise buildings and bridges.

Bored piles are non-displacement piles which are installed by first removing the soil by a drilling process and then constructing the pile by placing concrete in the drilled hole. The preference of bored piles over other types of piles can be attributed to its potentiality to reach the bearing stratum chosen in the design, flexibility to adapt the diameter to load requirements, economy in the use of steel and minimum noise and vibration in installation.

The use of under-reams in bored pile construction has been successfully carried out in London Clay where boreholes can stand unsupported; and in Texas and India where expansive soils are met extensively. The principal advantages in under-reaming the base are substantial increases in the ultimate bearing capacity and uplift resistance.

1.2. Purpose Of Research

The purpose of this research are :

- to pioneer the construction of under-reamed bored piles in Bangkok Clay.
- (2) to investigate the possibility of using only light equipment and accessories in the construction works.
- (3) to design a suitable under-reamer capable of forming an enlargement at the base of a pile using the dry and wet methods.