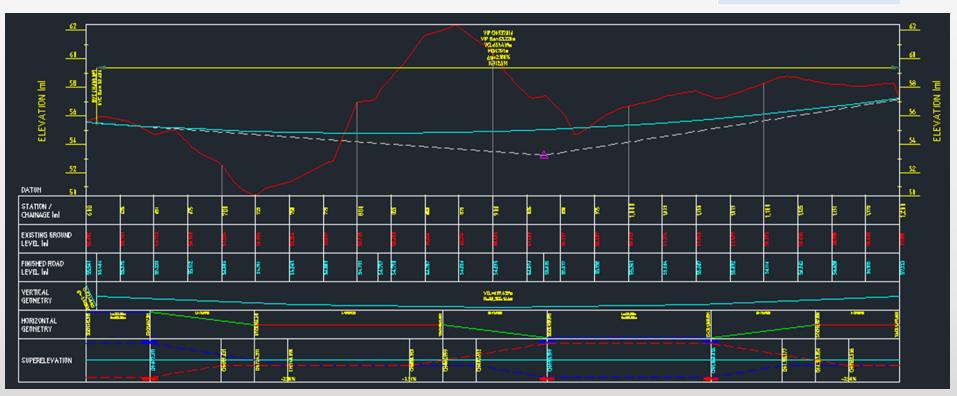


CROSS SECTION ELEMENTS

Ir. MUNIRAH BINTI HASAN, JAK, BRJ ZON TENGAH, PKJJ CJ



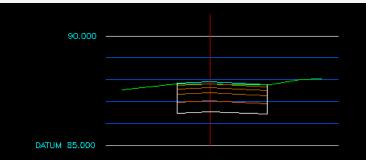
HORIZONTAL ALIGNMENT

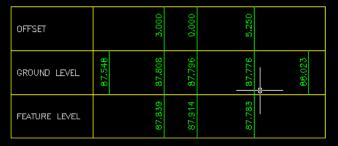


VERTICAL ALIGNMENT

Vertical profile

Superelevation diagram


-36305.009 46566.878


START OF PROJECT

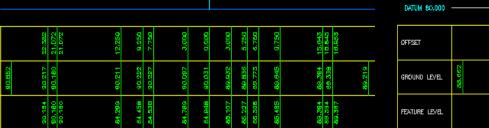
E=-38,336.330m N=-46,538.394m CH=121.853m ∆=45°53'30 Rc=100.000m T=42.336m Dc=57°17'45" Lc=80.096m E=8.593m

5

А С Fill Cut R.O.W

ALIGNMENT R1 CHAINAGE 25,000

CH 25.00

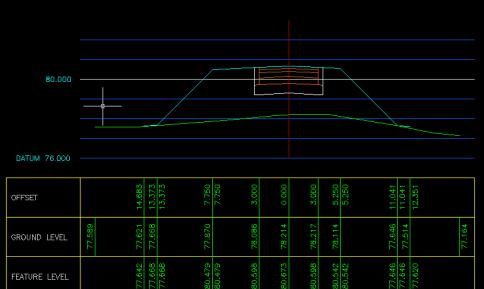


OFFSET		16.909	15,539	15.599 12.250	9.2E0	7.750	3.000	0,000	4.500	6.750	8,250	11.250		14.283	15.573
GROUND LEVEL	90.554	90.779	90.854	91.048	91.051	90.997	90.788	90 .5 B6	85.88	88.3B3	89,452	89.642	90.855	91,098	92.776
FEATURE LEVEL		90.628	90.854	90.654 89.621	34 .696	88.734	89.853	64 ,928	89.815 89.815	89 .759	89.721	89.646	90.655	80.655	90.629

ALIGNMENT R1 CHAINAGE 50,000

ALIGNMENT R1 Chanage 325.000

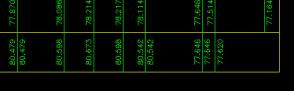
CH 325.00


90.000 90.000 85.000 TUM 60.000

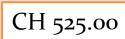
OFFSET	21,500	20.280	20.250 12.250	8.250	7 750	3.000	0.000	3,000	5.250	6,750	8.75D	17.791 17.791 18.101
ground level	33.662 33.241	88.14B	67.35 6	88.736	Big 198	34.405	89.449	88.422	88.401	39,384	39.34B	89.321 89.327 89.314
FEATURE LEVEL	88.121	88,143	55.148 32.795	82,954	AT 033	63.285	83.444	83,603	83.722	83,802	53.961	88.321 89.321 89.295

GROUND LEVEL

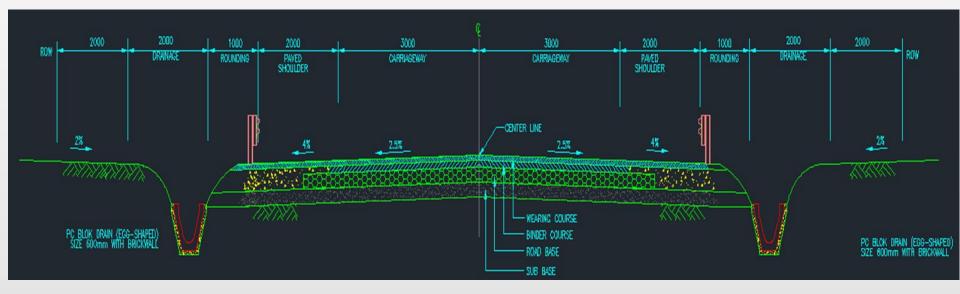

FEATURE LEVEL



OFFSET		11.678	10.368	10.368	7.750	7.750	3.000	0.000	3,000	5.250	5.250	8.470	8.470	9.780	
GROUND LEVEL	79.593	79.293	79.324		79,371		79,395	79.264	79.190	79.146		79.086	79.067		78.967
FEATURE LEVEL		79.298	79.324	79.324	80,633	80.633	80.752	80.827	80.752	80.696	80.695		79.086	79.060	



ALIGNMENT R1 CHAINAGE 525.000


ALIGNMENT R1 CHAINAGE 500.000

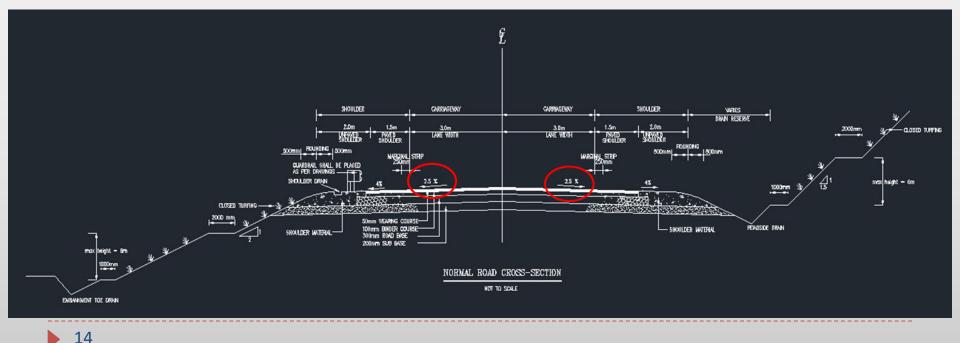
CH 500.00

9

TYPICAL ROAD CROSS SECTION

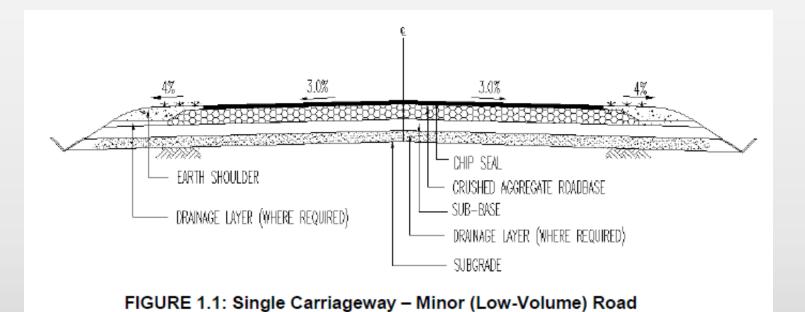
Surface type

- Selection of pavement type is determined by
 - 1) Volume & Composition of Traffic
 - 2) Soil characteristics
 - 3) Weather
 - 4) Availability of materials
 - 5) Maintenance
 - 6) Service life cost
- Structural design of pavement
 - ATJ 5/85 (Pindaan 2013)- Manual for the Structural Design of Flexible Pavement
 - Design Guide for Alternative Pavement Structures, Low-Volume Roads



Design Standard	Description
R6 / U6	Asphaltic Concrete / Concrete / Specialty Mix
R5 / U5	Asphaltic Concrete / Concrete / Specialty Mix
R4 / U4	Asphaltic Concrete / Specialty Mix
R3 / U3	Concrete / Specialty Mix / Asphaltic Concrete
R2 / U2	Surface Treatment / Semigrout / Asphaltic Concrete
R1 / U1	Gravel / Surface Treatment

Table 5.1 ATJ 8/86 (Pindaan 2015) : Pavement Surface Type


Normal Cross Slope

- To minimize water ponding on flat sections
- To control the flow of water
- The range of cross slopes for various pavement types varies from 2.5% 6.0%

Typical Flexible Pavement Structure

Typical Flexible Pavement Structure

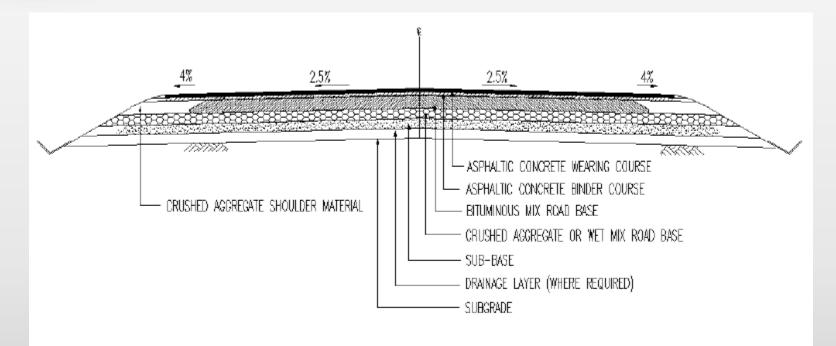


FIGURE 1.3: Dual Carriageway – Major Road

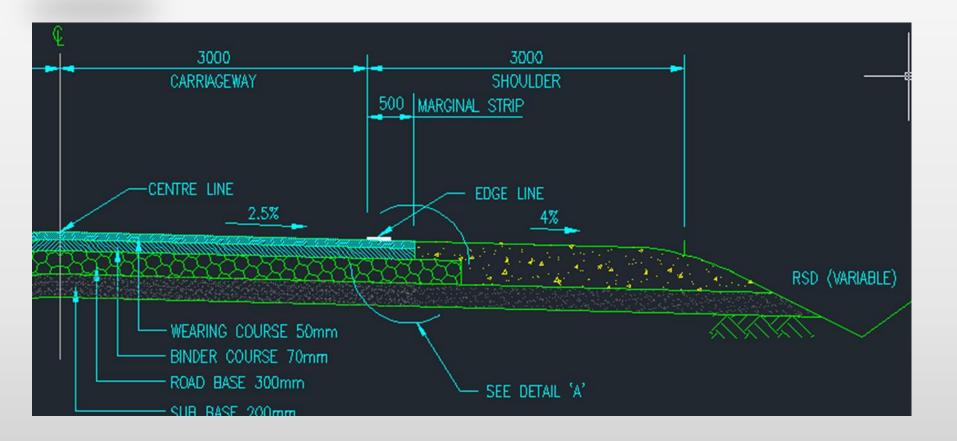
LANE WIDTHS & MARGINAL STRIP

LANE WIDTHS

- > Important for safety & comfort of driving
- > The capacity of road primarily depends on the number of traffic lanes and their width
- > The lane width is determined by
 - 1. Size of vehicle
 - 2. Average Daily Traffic Volume of commercial vehicles
 - 3. Requirement for overtaking and passing

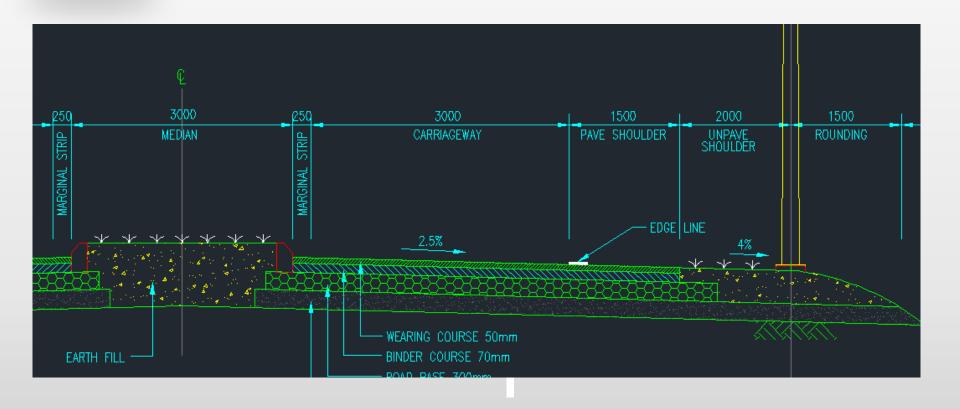
MARGINAL STRIP

- > Narrow pavement strip attached to both edges of a carriageway
- For divided roads, the marginal strips are provided on both sides of the carriageway in both directions


LANE WIDTHS & MARGINAL STRIP

Design Standard	Lane Width (m)	Marginal Strip Width (m)			
R6 / U6	3.65	0.50			
R5 / U5	3.50	0.50			
R4 / U4	3.50	0.25			
R3 / U3	3.25	0.25			
R2 / U2	3.00	0.25			
R1 / U1	5.00 (total two-way)	0.00			
Interchange Ramps Single lane Multilane Single lane loop	4.50 3.50 4.50	Lt 1.50 Rt 0.50 Lt 0.50 Rt 0.50 Lt 1.50 Rt 0.50			

Table 5.2 ATJ 8/86 (Pindaan 2015) : Lane & Marginal Strip Widths



LANE WIDTHS & MARGINAL STRIP

LANE WIDTHS & MARGINAL STRIP

- The portion of the roadway continuous with the travelled way
- Functions:
 - > for emergency stopping free of the traffic lane
 - > for occasional motorist who desires to stop for various reason
 - > to escape potential accident or reduce their severity
 - > contribute to driving ease and comfort
 - > improving safety (sight distance) in cut sections
 - > improving highway capacity and encourage uniform speed
 - > space for signs and guardrails
 - > enhance structural support to the pavement

- Types of shoulders:
 - Paved : bituminous or concrete surface
 - Unpaved : crushed rock, earth or turf
- Width of shoulders (usable)

TABLE 5.3A: USABLE	SHOULDER	WIDTH	(RURAL)
--------------------	----------	-------	---------

	Usable Shoulder Width (m)								
Design Standard		Terrain							
	Flat	Rolling	Mountainous						
R6	3.00	3.00	2.50						
R5	3.00	3.00	2.50						
R4	3.00	3.00	2.00						
R3	2.50	2.50	2.00						
R2	2.00	2.00	1.50						
R1	1.50	1.50	1.50						

Source: REAM GL 2/2002: A Guide on Geometric Design of Roads, Table 5-3A

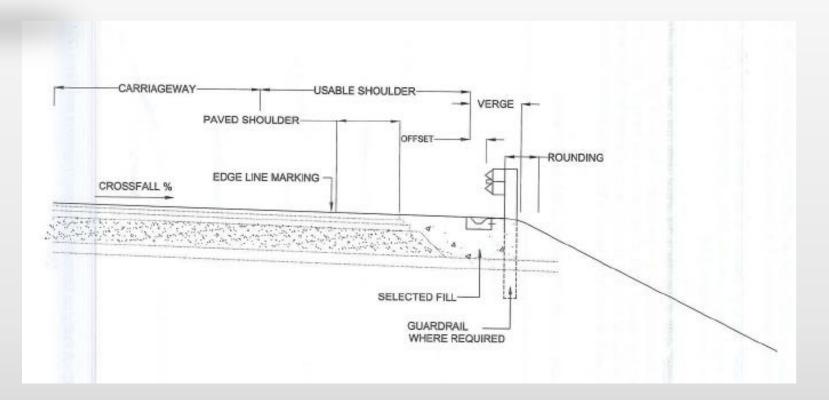
TABLE 5.3B: PAVED SHOULDER WIDTH (URBAN)

	Pa	ved Shoulder Width (m)
Design Standard		Area Type *	
		**	III **
U6	3.00	3.00	2.50
U5	3.00	3.00	2.50
U4	3.00	2.50	2.00
U3	2.50	2.00	1.50
U2	2.00	1.50	1.50
U1	1.50	1.50	1.50

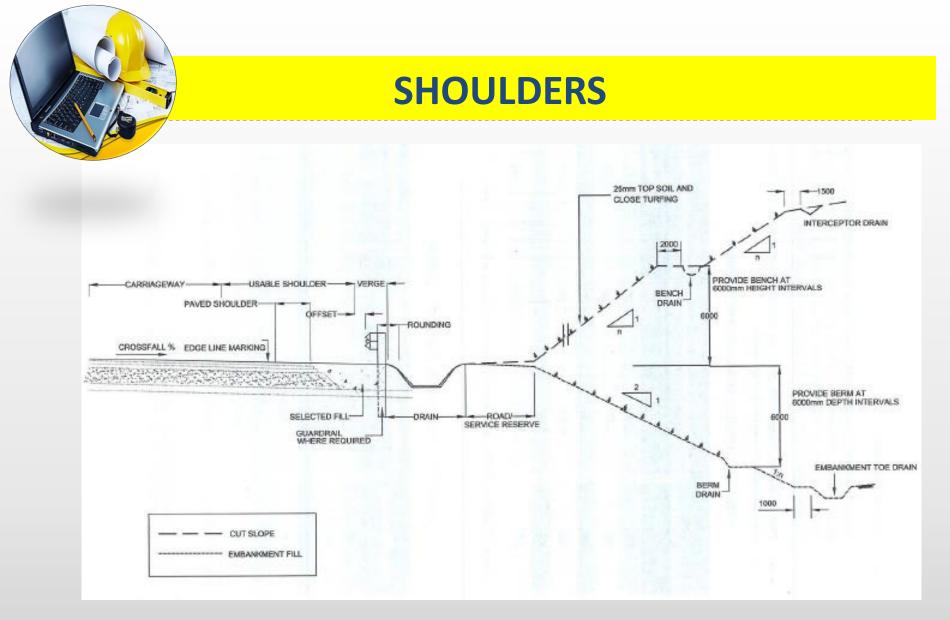
Source: REAM GL 2/2002: A Guide on Geometric Design of Roads, Table 5-3B

Notes:

- For Area Type definition, see Table 3-2B
- * For Areas Type II & III, U1 to U4, shoulder may be replaced by sidewalk


TABLE 5.4: PAVED SHOULDER WIDTH (RURAL)

Design Standard	Paved Shoulder Width (m)				
R6	2.5				
R5	2.5				
R4	1.5				
R3	1.5				


Note:

- (i) For R5 & R6 in mountainous terrain, road shoulder should be paved even though minimum usable shoulder width might not be attainable.
- (ii)For R1 & R2, there is no requirement of minimum shoulder width to be paved.

Typical cross section of shoulder and verge

Typical road cross section of cut slope and embankment fill

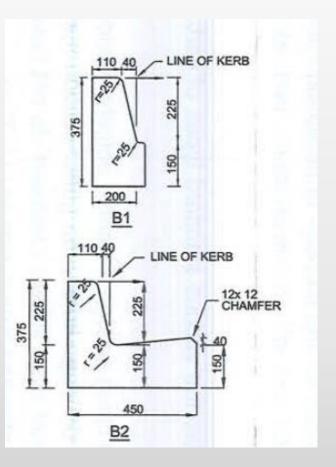
Shoulder cross slopes

- a) Should be sufficiently to rapidly drain surface water but not to the extent that vehicular use would be hazardous.
- b) Bituminous / concrete surface shoulder : 2.5% 6%
- c) Gravel/crushed rock shoulder : 4% 6%
- d) Where kerbs are used on the outside of the shoulder minimum cross slope should not be less then 4% to prevent water ponding on the roadway

Shoulder structure

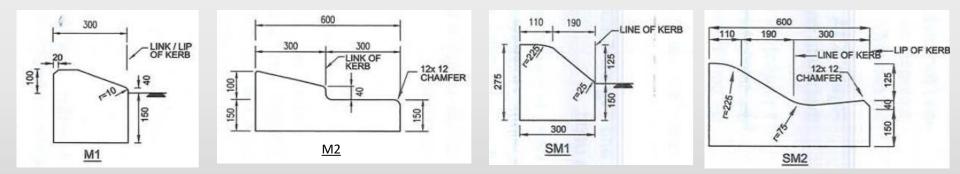
The structure for paved shoulder should be similar as structure for the carriageway

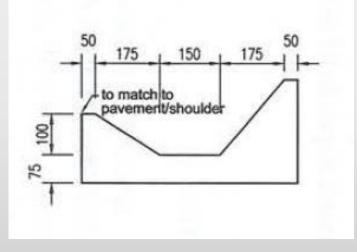
KERBS


- Functions:
 - > Used for drainage control
 - Pavement delineation
 - > Aesthetics
 - > Delineation of pedestrian walkways
 - > To assist in the orderly development of the roadside
- Mostly needed on roads in urban areas
- In rural areas, the use of kerbs should be avoided as far as possible except in localized areas which has predominant aspects of urban condition

KERBS

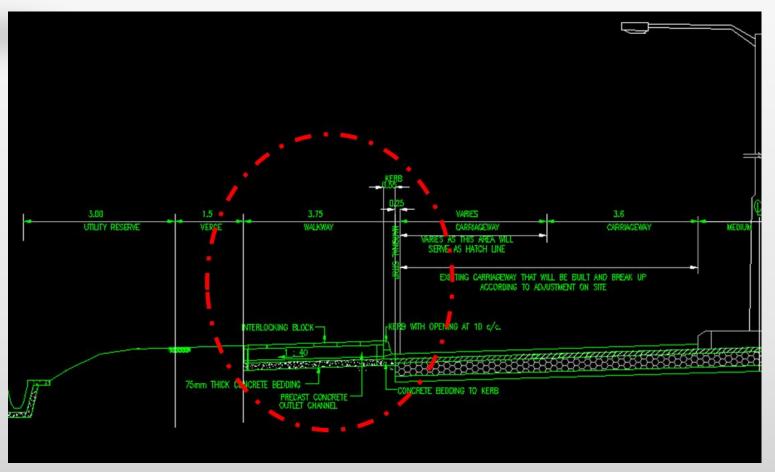
Barrier kerbs


- > High & steep faced
- Designed to inhibit or discourage vehicles from leaving the roadway
- > Not to be used on expressways
- Not to be used where the speed > 70km/hr
- Recommended for use in built-up areas adjacent to footpaths


- Mountable / Semi-mountable kerbs
 - > allow vehicles to cross over and park clear of carriageway
 - For delineation and drainage on all intersections
 - > suitable for all roads including expressways (SM)

- Channel kerbs
 - > used where surface runoff is considerably large
 - > used on embankment along the paved shoulder immediately in front of barrier (guardrail/NJB)

SIDEWALK



SIDEWALK

- No numerical warrants, justification depends on vehicle-pedestrian hazard (volume of pedestrian, vehicular traffic, timing and speed)
- > Urban areas; adjacent to the kerb, raised above pavement or in absence of kerb, a strip (safety barriers or hedges/trees) with a minimum width of 1.0 m separating sidewalk and travelled way
- Rural areas; well away from travelled way and separated from shoulder by at least 1.0 m
- Desirable width 2.0 m; Minimum 1.50 m (restrictions on right of way)
- Must have all-weather surface

SIDEWALK

- Desirable on roads with four or more lanes
- Function:
 - > to provide the desired freedom from the interference of opposing traffic
 - > to provide a recovery area for out-of-control vehicles
 - > to provide for speed changes and storage of right turning & uturning vehicles
 - > to provide for future lanes
- Should be highly visible both night & day

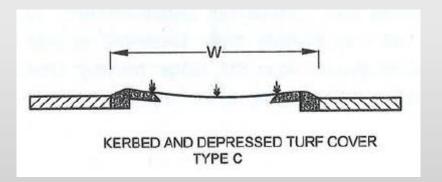
TABLE 5.5A: MEDIAN WIDTH AND TYPES (RURAL)

Design Standard	Median Width (m) Terrain						
	F	at	Rolling		Mountainous		Туре
	Min.	Des.	Min.	Des.	Min.	Des.	
R6	4.0	10.0	4.0	10.0	4.0	10.0	B,C,E,F
R5	4.0	6.0	3.0	5.0	2.0	4.0	E,F
R4	3.0	5.0	2.0	4.0	1.5	3.0	E,F

Source: Adapted from REAM GL 2/2002: A Guide on Geometric Design of Roads, Table 5-5A

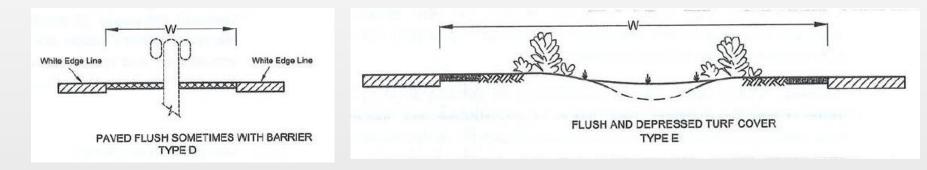
<u>Note:</u> <u>Min.</u> - Minimum <u>Des.</u> - Desirable (for consideration of landscaping or other aesthetic features)

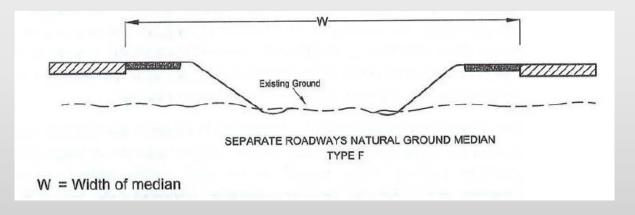

TABLE 5.5B: MEDIAN WIDTH AND TYPES (URBAN)


Design Standard	Median Width (m) Area Type							
	Min.	Des.	Min.	Des.	Min.	Des.	Туре	
U6	4.0	9.0	3.5	6.0	2.0	4.0	B,C,E,F	
U5	3.0	6.5	2.5	4.0	2.0	3.0	B,C,E	
U4	2.5	5.0	2.0	3.0	1.5	2.0	A,B,C,D	
U3	2.0	4.0	1.5	2.0	1.5	2.0	A,B,D	

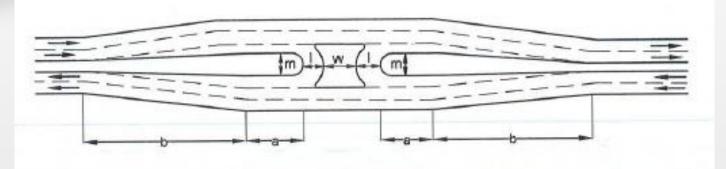
Source: Adapted from REAM GL 2/2002: A Guide on Geometric Design of Roads, Table 5-5B

Note:									
Min.	-	Minimum							
Des.	-	Desirable	(for	consideration	of	landscaping	or	other	aesthetic
		features)							



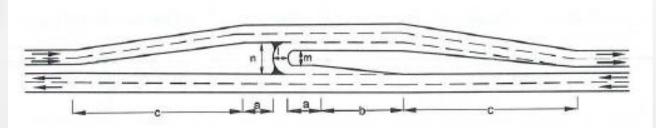


B) NON KERBED (TYPE D,E & F)



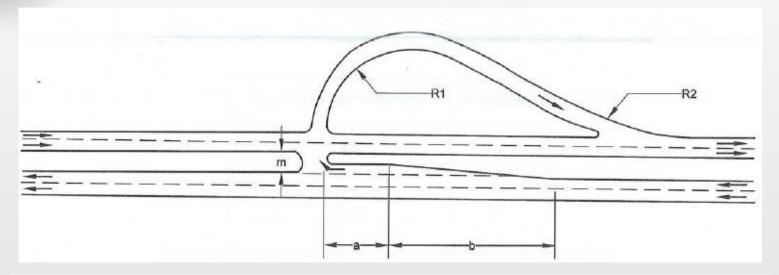
Direct u-turns

	MINIMUM WIDTH OF MEDIAN - (m) METH FOR DESIGN VEHICLE			
1911	TYPE OF MANEUVER	Р	SU	WB-15
INNER LANE TO INNER LANE		9.75	19.50	21.25
INNER LANE TO OUTER LANE		6.00	15.75	17.75
INNER LANE TO SHOULDER		3.00	12.75	14.50



DIMENSION	MINIMUM DISTANCE (m)
m	10.0
1	7.5
w	10.0
а	20.0
b	60.0

FIGURE 5-7A: RECOMMENDED LAYOUT FOR DIRECT U-TURN (LOW SPEEDS)

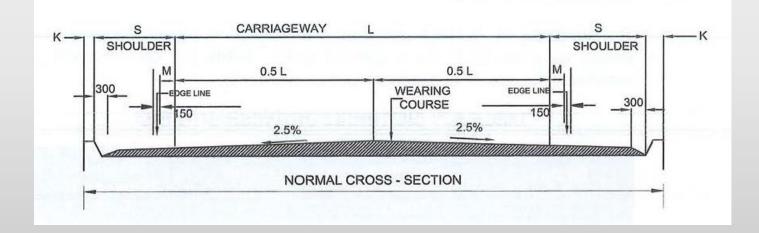


DIMENSION	MINIMUM WIDTH / DISTANCE (m)
а	20
b	60
c	120
1	7.5
m	10.0
n	17.0

FIGURE 5-7B: RECOMMENDED LAYOUT FOR DIRECT U-TURN (HIGH SPEEDS)

Indirect u-turns

DIMENSION	MINIMUM DISTANCE (m)	DIMENSION	MINIMUM DISTANCE (m)
m	4	R1	50
1	8	R2	100
а	20	b	60


BRIDGE & STRUCTURE CROSS SECTION

BRIDGE & STRUCTURE CROSS SECTION

- The width of the shoulder should be the same as that of the carriageway
- Required clearance:
 - vertical height clearance minimum 5.4 m.
 - recommended additional 0.1 m to be allowed for future resurfacing.
 - whenever resurfacing will reduce the clearance to less than 5.4 m,

milling will be required to maintain the minimum <u>clearance</u>.

BUS LAY-BYS

BUS LAY-BYS

- Serve to remove bus from through traffic lanes
- Locations:
 - Not to be located on any interchange ramps or structures, slip roads or within 6om of any junction or intersection
 - Distance between lay-bys > 150m
- Layout

THANK YOU