

Earthquake Engineering In Malaysia – JKR pi mana?

Cawangan Kejuruteraan Awam dan Struktur Jabatan Kerja Raya Malaysia Kuala Lumpur *Ir. Mohd Noor Azudin b Hj Mansor Pengarah Kejuruteraan Pakar (Struktur) 23 September 2016*

INTRODUCTION

- In 26 December 2004, an 9.1 Richter scale earthquake occured in Acheh and inducing the Indian Ocean tsunami which struck Malaysia by affecting Penang and Kedah states and to a lesser degree Perlis and Perak.
- The tsunami is the worst natural disaster in history and claimed 69 lives and left an additional 8,700 Malaysians (mainly women and children) from the coastal fishing inlets in Kedah (including Langkawi) and Penang without homes and livelihoods.

 Subsequent from that disaster Malaysian Government formed the Inter-Agency Committee on Earthquake and Tsunami Risk Management on 5th September 2005.

picture courtesy of BBC

picture courtesy of The Star

picture courtesy of The Star

INTRODUCTION

- Inter-Agency Committee on Earthquake and Tsunami Risk Management has identified 6 Major action plans within the strategy groups.
- Jabatan Kerja Raya (JKR) has been involved with Working Group 2, which is to provide seismic inputs for building design and critical infrastructures
- JKR hosted the National Seminar on Earthquakes in PWTC Kuala Lumpur on 15 May 2007.
- 31 March 2010 JKR proposed the "Seismic Design Guideline For Concrete Building In Malaysia" which was to be used departmentally.
- 11 August 2015 Department of Standards Malaysia (SIRIM) published MS EN 1995-1:2015 Design of structures for earthquake resistance Part 1 "General rules seismic actions and rules for buildings" albeit without the related National Annex. The standard was developed under Technical Committee 4 headed by Institute of Engineers Malaysia as the Standard Writing Organization.

					JKR206	601-01	84-09			
			TABLE OF CONTENT							
1.0	INTR	ористі	ON							
	1.1	Seism	ic Historical Background of Malaysia		1					
	1.3	Nation	al Annex		1					
2.0	1.4	Seisii			2					
2.0	PROC	EDURE	OF DESIGN AND ANALYSIS OF BUILDING	•						
	2.1	2.1.1	General		3					
		2.1.2	Method 1: Eurocode 8 Based Design (EBD) Method 2: IBC 2000 Based Design (IBD)		37					
	2.2	Modal	response spectrum analysis		12					
		2.2.2	Method 1: Eurocode 8 Based Design (EBD)	12					
		2.2.3	Method 2: IBC 2000 Based Design (IBD)		14					
3.0	SPEC	IFIC RU	LES FOR CONCRETE BUILDINGS							
	3.1 3.2	Desig	al n Concepts		16					
		3.2.1 3.2.2	Energy dissipation capacity and ductility of Structural types and behaviour factors	asses	16 16					
			3.2.2.1 Structural types 3.2.2.2 Behaviour factors for horizontal se	ismic	16					
			actions	Shine	16					
		3.2.3	3.2.3.1 General		17					
			3.2.3.2 Local resistance conditions 3.2.3.3 Capacity design rule		17					
			3.2.3.4 Local ductility condition		17					
		Desi	3.2.3.6 Specific additional measures		18					
	3.3	High (DCH)	aity	19					
		3.3.1	Geometrical constraints and materials 3.3.1.1 Material requirements		19 19					
			3.3.1.2 Geometrical constraints 3.3.1.2 Beams		19 19					
		333	3.3.1.2.2 Columns		19					
		0.0.2	3.3.2.1 Beams		19					
			3.3.2.2 Columns 3.3.2.3 Beam Column Joints for							
		3.3.3	3.3.3.1 Beams							JKR20
							333	11	Resistance in Bending and she	ar 21
Selsm	ic Desig	n Guldell	nes For Concrete Building in Malaysia				3.3.3	.1.2	Detailing for local ductility	21
							3.3.3.3 Colu	nns	tance for DCH	23
							3.3.3	3.2.1 3.2.2	Resistances Detailing of primary seismic	23
							3334 Bear	n-colu	column for local ductility	23
				1	3.4 Pi	rovisi	ons for Anch	orage	s And Splices	25
					3.	4.1	General Anchorage o	f reinf	orcement	25
							3.4.2.1 Col 3.4.2.2 Bez	umns		25 26
					3.	4.3	Splicing of b	ars	Vienheimen	26
							ANALYSIS F		naphragnis I ES	23
									and Design (EBD)	20
				-	4.2 M	lethod	2: IBC 2000	based	l Design (IBD)	29
				4	4.3 D 4.	esign .3.1	Example for Lateral Seisn	12-Sto nic De	ory Frame-Shear Wall Building sign Force	31
					43	3.2 C	alculation of t direction	he stru	icture in the transverse	33
					43	3.3 D	esign of Bean 4.3.3.1 DCH	ı (Flexu	ural Members)	35 38
							4.3.3.2 ULS	Verific	ation and Detailing	39
					4.	.9.4 [4.3.4.1 Brace	ed Col	umns (Clause 4.3.5.3.2, EC2)	40
							4.3.4.2 Slend 4.3.4.3 Slend	lernes ler Col	s Ratio (Clause 4.3.5.3.5, EC2) lumns (Clause 4.3.5.5.3, EC2)	40 41
							4.3.4.4 Desig	n of c	olumns in non sway structures	41
							4.3.4.3 Keint (Clau	orcem ise 4.4	1.1.2.1, EC2)	42
							4.3.4	.5.1 L	ongitudinal reinforcement ransverse reinforcement	42
					4.	3.5	Example of C	olum	n Design	43
							4.3.3.1 Exter 4.3.5.2 Interi	or colu	umn	43

JKR20601-0184-09

Macrozonation Maps Used in the Guideline

Figure 1. Macrozonation Map for 500 years return period at T=0.2 sec.

Figure 2. Macrozonation Map for 500 years return period at T=1.0 sec.

Figure 5. Peak ground acceleration (PGA) maps for 500 year

Figure 6. Peak ground acceleration (PGA) maps for 2,500 year

SEISMOLOGICAL STATION (OPERATED IN 2015)

Source: Dr. Chai Mui Fatt, Malaysian Meteorological Department

METHOD AND SYSTEM FOR TRANSMITTING SEISMIC DATA

Source: Dr. Chai, Malaysian Meteorological Department

MALAYSIAN STANDARD

MS EN 1998-1:2015

The new MS EN 1998-1 published 11 August 2015

Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings

ICS: 91.120.25; 93.040

Descriptors: eurocode, seismic action, imposed loads, earthquake, structure, design, building

FOR SALE WITHIN MALAYSIA ONLY

© Copyright 2015 DEPARTMENT OF STANDARDS MALAYSIA

Draft NA to MS EN 1998

- The Department of Standards Malaysia published the draft copy of National Annex to MS EN 1998-1: 2015-15D005R0q in February 2016 for public comment
- A period of two(2) months was given for public comments from 1st Feb till 01 April 2016.
- O Due to overwhelming public comments not agreeing to the proposed National Annex, SIRIM conducted a National Consultation meeting to obtain consensus from major stakeholders, namely: the local consultants, government agencies, local university researchers and other stakeholders, which also includes JKR on 23rd August 2016.

DRAFT MALAYSIAN STANDARD

15D005R0 q

STAGE : PUBLIC COMMENT (40.20) DATE : 01/02/2016 - 01/04/2016

Malaysia National Annex to MS EN 1998-1: 2015, Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings

OFFICER/SUPPORT STAFF: (NM /)

ICS: 91.120.25

Descriptors: Earthquake, Seismic Design of Structure, PGA, Site Natural Period, Hybrid Response Spectrum, Return Period

© Copyright

DEPARTMENT OF STANDARDS MALAYSIA

Drafting Committee Members

Acknowledgements

Members of Technical Committee on Earthquake

Ir. Prof. Dr. Jeffrey Chlang Choong Luin (Chairman) Ir. Adjunct, Prof. MC Hee Ir. Mun Kwal Peng (IEM-SWO Coordinator) The Institution of Engineers, Malaysia Ir. Lee Weng Onn Ir. Dr. Ool Telk Aun Ir. Dr. Ool Heong Beng

Ir. P C Augustin Ir. Tu Yona Ena Ir. Chen Wal Peng Ar. Andy Gan Khal Fatt Mr. Ong Ka Thlam En. Syed Hazni Syed Abd. Ghani

Dr. Wan Azil bin Wan Hassan

Dr. Nazirah Ahmad Ir. Prof. Dr. Mohd. Zamin bin Jumaat Dr. Lau Tze Llang Prof. Dr. Azlan Adnan Prof. Dr. Azmi Ibrahim

Members of Working Group 1 (WG1) on Earthquake Actions

Ir. Adjunct. Prof. MC Hee (Chairman Reader Dr. Nelson Lam Dr. Tsang Hing-Ho Engr. Daniel Lool Ting Wee

Ir EPUm Mr. Ahmed Zuhal Zaeem The Institution of Engineers, Malaysia University of Melbourne, Australia Swinburne University of Technology, Australia The Institution of Engineers, Malaysia (University of Hona Kona) Hashim & Neh Sdri Bhd University of Malaya

The Institution of Engineers, Malaysia

The institution of Engineers, Malaysia

The Institution of Engineers, Malaysia

YL Deskin Consultancy Services

HSS Engineering Sdn. Bhd

Malayslan Rubber Board

Universiti Sains Malaysia

Universiti Teknologi Malaysia

Universiti Teknoloği MARA

University Malaya

Pertubuhan Arkitek Malavsia Master Builders Association Malaysia

Regional Group)

Malavsla

The Institution of Engineers, Malaysia (GETD)

Association of Consulting Engineers Malaysia

Construction Industry Development Board,

Malaysia Meteorological Department/

Ministry of Science Technology & Innovation

Institute of Structural Engineers (Malaysia

Members of Working Group 2 (WG2) on Vulnerability of Concrete Structures

Ir. Lee Weng Onn (Chairman)	The Institution of Engineers, Malaysia
Ir. Prof. Dr. Jeffrey Chlang Choong Luin	The Institution of Engineers, Malaysia

Members of Working Group 3 (WG3) on Geotechnical

Ir. Mun Kwal Peng (Chairman)	The Institution of Engineers, Malaysia
Ir. Dr. Ool Telk Aun	The Institution of Engineers, Malaysia
Ir. Liew Shaw Shong	The Institution of Engineers, Malaysia

Members of Working Group 4 (WG4) on Non Structural Elements

Ar, Andy Gan Khal Fatt (Chairman) Ir. Dr. Ool Heong Beng

Pertubuhan Arkitek Malaysia Institute of Structural Engineers (Malaysia Regional Group)

Members of Working Group 5 (WG5) on Base Isolations

Dr. Nazirah Ahmad (Chairman) Prof. Dr. Azlan Adnan Engr. Muhammad Umar Zulkefil Ir. Che Kob bin Ismail Mr. Or Tan Teng Ir. Cheng Hung Lim Prof. Dr. Azmi Ibrahim

Malaysian Rubber Board Universiti Teknologi Malavsia Malavsian Rubber Board IRC Jurutera Perunding Sdn Bhd Doshin Rubber Minconsult Sdn Bhd Universiti Teknologi MARA

Members of Working Group 6 (WG6) on Task Force on National Annex

Ir. Mun Kwal Peng (Chairman) Ir. Adjunct. Prof. MC Hee Ir. Dr. Ool Heong Beng

Ir. David No. Prof. Dr. Azlan Adnan or Publi

The Institution of Engineers, Malaysia The Institution of Engineers, Malaysia Institute of Structural Engineers (Malaysia Regional Group) The Institution of Engineers, Malaysia Universiti Teknologi Malaysia

Draft NA to MS EN 1998

Comments by public consists of:

- i. Probabilistic Seismic Hazard Analysis(PSHA) & need of seismic hazard map (31%)
- ii. Response Spectrum Shape (12.2%)
- iii. Site factor provisions (12.2%)
- iv. Classification of Buildings Importance factor(10.2%)
- v. Return period (8.2%)
- vi. Vertical elastic response spectrum(6.1%)
- vii. Exclusion of very low seismicity zone in Malaysia(6.1%)
- viii. Modified Mercalli Intensity (MMI) Map Malaysia(4.1%)
- ix. New term introduced as "Notional return period"(2%)
- x. Displacement principles introduced (2%)
- xi. Request for background data(2%)
- xii. Cost escalation(4.1%)
- It was agreed in the National Consultation meeting that the proposed National Annex shall obtain consensus from all stake holders.

Draft NA to MS EN 1998

- Initially JKR was not involved in the TC in drafting the NA.
- JKR was called in to represent the Government's interest after the outcome of the public comment.
- A National Consultation meeting was called in August 2016 and JKR was represented.
- A study group to restudy the proposed methodology, PGA values and the response spectrum and is expected to complete in November 2016. JKR is also represented in this study.

Ranau Earthquake

- Ranau, Sabah Magnitude of 6.0 earthquake took 18 lives on 05 June 2016.
- The dead were mainly climbers on the way down from Mount Kinabalu.
- The earthquake also resulted damages to buildings and infrastructures.
- The last strongest quakes recorded was in Lahad Datu 1976 with Magnitude 6.2, a coastal city about 211km away from Ranau
- On 26 August 2016, another earthquake with a magnitude of 4 was recorded with the epicenter located 16km north west of Ranau city

picture courtesy of Dr Sophia

picture courtesy of Prof Felix

Current Earthquake Studies Funded by The Malaysia Government

 Subsequent from the Ranau earthquake, on 19 Jun 2015, The Malaysian Government initiated a study to identify the vulnerability of the existing structure in Sabah due to seismic activities.

• The study is being conducted by JKR Malaysia and in collaboration with JKR Sabah.

• Due to complete by end of November 2016

Regions Involved

NO.	DAERAH	NOS. OF BUILDING
1	KOTA KINABALU	3
2	PENAMPANG	3
3	RANAU	4
4	BEAUFORT	2
5	KUDAT	6
6	KOTA MARUDU	3
7	KENINGAU	9
8	TAMBUNAN	3
9	SANDAKAN	6
10	SEMPORNA	6
11	TAWAU	3
12	LAHAD DATU	6

Seismic Zones in Sabah

Extracted from Seminar Teknikal Gempabumi JMM, 20 Dec 2011 proceeding's.

Geological Assesment of the Earthquake Sources and Hazard in Malaysia by Alexander Yan Sze Wah- JMG Sabah

- Extracted from Seminar Teknikal Gempabumi JMM, 20 Dec 2011 proceeding's.
- Geological Assesment of the Earthquake Sources and Hazard in Malaysia by Alexander Yan Sze Wah- JMG Sabah

Earthquake Risk Zone Based On Mercalli Observed Intensities

Building Types Involved

- Government Schools
- Government Hospitals
- Quarters
- Government Office
- Elevated Water Structure
- Training Tower
- Police and Fire Department Stations

- Stakeholders
 - Ministry of Works Malaysia
 - JKR Malaysia
 - JKR Sabah
 - Sabah Government

The Study Proposed Methodology

- Data Collection
 - Soil investigation (8 boreholes, 10 M.Probe)
 - As-built/remeasured drawing
- Evaluation
 - Rapid Visual Screening (FEMA 154)
 - Evaluating Seismic Resisting Capacity (ASCE43-12)
 - Detailed Dynamic Analysis
- Demand/Capacity Analysis (DCA) and Fragility Evaluation
- Proposed Retrofitting on Some Critical Building as Identified

Rapid Visual Screening of Buildings for Potential Seismic Hazards

A Handbook FEMA 154, Edition 2 / March 2002

nehrp

Rapid Visual Screening (FEMA 154)

ASCE 41-13 (Formerly FEMA 310)

Seismic Evaluation and Retrofit of Existing Buildings

This document uses both the International System of Units (SI) and oustomary units

FEMA 154: DATA COLLECTION FORM

RAPID VISUAL SCREENING OF BUILDINGS FOR POTENTIAL SEISMIC HAZARDS HANDBOOK (FEMA 154, EDITION 2 / MARCH 2002)

Form divided into 3 categories:

- a) Low Seismicity (strong)
 - < 0.167g (in horizontal direction)</p>
- b) Moderate Seismicity
 - (very strong)
 - ≥ 0.167g but less than
 0.500g (in horizontal direction)
- c) High Seismicity (severe)
 - $\ge 0.500g$ (in horizontal direction)

TIER 1 : RAPID SCREENING PROCESS FEMA-154 DATA COLLECTION FORM

LIST OF FEDERAL & STATE BUILDINGS FOR 2 STORIES AND ABOVE FOR REGIONS IN SABAH; SUMMARY OF FINDINGS FROM FEMA-154 DATA COLLECTION FORM

NO.	DAERAH	BANGUNAN PERSEKUTUAN	BANGUNAN NEGERI	BILANGAN BLOK BANGUNAN	BILANGAN TINGKAT	SEISMICITY	JENIS TANAH	BASIC SCORE	Mid Rise (4 to 7 Stories)	High Rise (> 7 Stories)	Vertical Irregularity	Plan Irregularity	Pre-code	Soil	SKOR AKHIR, S	LULUS/ TIDAK
		i) Rumah Persekutuan Negeri Sabah - > 3 tingkat			8	LOW	D	4.4	-	-0.4	-	-	-	-0.8	3.2	٧
1	KOTA KINABALU		i) Kementerian Pembangunan Infrastruktur JKR Sabah	3	8	LOW	E	4.4	-	-0.4	-	-	-	-2.0	2.0	v
			ii) Dewan Undangan Negeri Sabah		4	LOW	D	4.4	-0.4	-	-2.0	-0.8	-	-0.8	0.4	x
		i) Kuarters Bomba Penampang - 4 tingkat			4	LOW	D	4.4	-0.4	-	-2.0	-0.8	-	-0.8	0.4	x
2	PENAMPANG	ii) Flat Guru SK Kibabaig - 4 tingkat		3	5	LOW	D	4.4	-0.4	-	-2.0	-	-	-0.8	1.2	x
		iii) SMK Bahang, Penampang -2 BLOK			4	LOW	D	4.4	-0.4	-	-	-	-	-0.8	3.2	٧
		i) Kompleks Kerajaan Persekutuan			4	MODERATE	D	3.2	0.2	-	-2.0	-0.5	-1.0	-1.0	-1.1	x
3	RANAU		i) Bangunan Asrama Pusat Latihan Islam Kundasang	4	2	MODERATE	D	3.2	-	-	-	-	-	-1.0	2.2	v
		ii) Bangunan Asrama SMK Mat Salleh - Asrama Perempuan			3	MODERATE	D	3.2	-	-	-	-0.5	-1.0	-1.0	0.7	x
		iii) Bangunan Asrama SMK Mat Salleh - Asrama Lelaki	na SMK Mat aki		4	MODERATE	D	3.2	0.2	-	-	-0.5	-1.0	-1.0	0.9	x
	REALFORT	i) Kuarters Jabatan Bomba & Penyelamat Beaufort			5	LOW	D	4.4	-0.4	-	-2.0	-	-	-0.8	1.2	x
4	DEADFORT		i) Pejabat Urusetia Beaufort (JKR8200)	2	3	LOW	D	4.4	-	-	-2.0	-0.8	-	-0.8	0.8	x
		i) Federal Flat / Quarters 1 Blok (5 tingkat)			5	LOW	D	4.4	-0.4	-	-2.0	-	-	-0.8	1.2	x
		ii) Kuarters Bomba & Penyelamat Kudat			5	LOW	D	4.4	-0.4	-	-	-0.8	-	-2.0	1.2	x
5	KUDAT	iii) Menara Latihan Balai Bomba		6	5	LOW	E	4.4	-0.4	-	-	-	-	-2.0	2.0	٧
		iv) Kuarters Ibu Pejabat Polis Kudat			4	LOW	D	4.4	-0.4	-	-2.0	-	-	-0.8	1.2	x
		v) Bangunan Utama IPD Kudat			5	LOW	D	4.4	-0.4	-	-2.0	-0.8	-	-0.8	0.4	x
			i) Bangunan Urusetia - 2 Blok (4 tingkat)		4	LOW	D	4.4	-0.4	-	-	-	-	-0.8	3.2	٧

		i) Berek Polis Kota Marudu			5	LOW	E	4.4	-0.4	-	-	-	-	-2.0	2.0	v
6	кота	ii) Menara Latihan Balai Bomba		3	5	LOW	D	4.4	-0.4	-	-	-	-	-0.8	3.2	v
	MARODO	iii) Kuarters Bomba &			5	LOW	D	4.4	-0.4	-	-2.0	-	-	-0.8	1.2	×
		Penyelamat Kota Marudu	i) Bangunan Jabatan Tanah		2	1.01%	D	4.4	_				_	.0.8	26	v
		i) SMK Bingkor - Blok A & B	Dan Ukur		4	LOW	D	4.4	-0.4					-0.8	3.0	
		ii) SMK Bingkor - Blok C			3	LOW	D	4.4	-0.4	_	-	-0.8	-	-0.8	2.8	v
		iii) SMK Bingkor - Kuarters guru			5	LOW	D	4.4	-0.4	-	-2.0	-	-	-0.8	1.2	×
-	KENINGALI	iv) Institut Pendidikan Guru Keningau - Blok Pentadbiran		0	3	LOW	D	4.4	-	-	-	-	-	-0.8	3.6	v
Ĺ	KEININGAO	v) Institut Pendidikan Guru Keningau - Blok C B & D		9	5	LOW	D	4.4	-0.4	-	-2.0	-	-	-0.8	1.2	×
		vi) Institut Pendidikan Guru			5	LOW	D	4.4	-0.4	-	-2.0	-	-	-0.8	1.2	×
		vii) Institut Pendidikan Guru			4	LOW	D	4.4	-0.4	-	-2.0		_	-0.8	1.2	×
		Keningau - Kediaman Agatis viii) Institut Pendidikan Guru			4	1014	-		-0.4		-3.0			-0.8	1.2	
-		Keningau - Kuarters G & H			-	LOW	5	4.4	-0.4		-2.0	-	-	-0.8	1.2	~
		ii) Manara Latikan Balai Bomba			-	LOW		4.4	-0.4	-	-2.0	-0.8	-	-0.8	2.4	×
8	TAMBUNAN			3	3	LOW		4.4	0.4	-	-	-	-	-1.4	3.4	•
		ii) Berek Balai Polis Tambunan			5	LOW	D	4.4	-0.4	-	-2.0	-	-	-0.8	1.2	×
			i) Perpustakaan Wilayah Sandakan		4	MODERATE	D	3.2	0.2	-	-2.0	-0.5	-	-1.0	-0.1	×
		i) Hospital Duchess of Kent - Bangunan Pakar/ Kecemasan 4 tingkat,			4	MODERATE	D	3.2	0.2	-	-2.0	-0.5	-	-1.0	-0.1	×
9	SANDAKAN	ii) Hospital Duchess of Kent - ICU Operation Room, etc.		6	5	MODERATE	D	3.2	0.2	-	-	-0.5	-	-1.0	1.9	×
		iii) Kolej Kejururawatan -Asrama 4 tingkat			4	MODERATE	E	3.2	0.2	-	-	-	-	-1.6	1.8	×
		iv) UMS Sandakan			4	MODERATE	D	3.2	-	-	-	-	-	-1.0	2.2	v
		v) Wisma Kastam - Pejabat Pentadbiran 4 tingkat			4	MODERATE	D	3.2	0.2	-	-2.0	-0.5	-	-1.0	-0.1	×
		i) Jabatan Penerangan			2	MODERATE	D	3.2	-	-	-	-	-	-1.0	2.2	v
		ii) Hospital Semporna			3	MODERATE	D	3.2	0.2	-	-2.0	-0.5	-	-1.0	-0.1	×
		iii) Kuarters Pejabat Kesihatan Semporna			5	MODERATE	D	3.2	0.2	-	-	-	-	-1.0	2.4	v
10	SEMPORNA	iv) SMK Datuk Panglima Abdullah - Kuarters		6	5	MODERATE	D	3.2	0.2	-	-2.0	-	-	-1.0	0.4	×
		v) SMK Datuk Panglima Abdullah - Elevated Water Tank			6	MODERATE	D	3.6	0.4	-	-	-	-	-1.2	2.8	v
		vi) Kuarters Kompleks TLDM			5	MODERATE	Е	3.2	0.2	-	-	-	-	-1.6	1.8	×
		i) Wisma Persekutuan			8	MODERATE	E	3.2	-	0.4	-	-	-	-1.6	2.0	v
11	TAWAU	ii) Hospital Tawau - Kolej Jururawat		3	4	MODERATE	D	3.2	0.2	-	-	-	-	-1	2.4	v
		iii) Hospital Tawau			6	MODERATE	D	3.2	0.2	-	-2.0	-0.5	-	-1.0	-0.1	×
			i) Kuarters Kerajaan Negeri - 4 tingkat.		4	MODERATE	E	3.2	0.2	-	-	-	-	-1.6	1.8	x
		i) Kuarters Balai Polis Lahad Datu - 6 tingkat.			6	MODERATE	E	3.2	0.2	-	-2.0	-	-	-1.6	-0.2	×
12	LAHAD DATU	ii) Hospital Lahad Datu - 5 tingkat.		6	5	MODERATE	D	3.2	0.2	-	-	-	-	-1.0	2.4	v
		iii) Kuarters B, Hospital Lahad Datu - 5 tingkat.			5	MODERATE	D	3.2	0.2	-	-2.0	-	-	-1	0.4	×
		iv) Kolej Vokasional Lahad Datu - 3 tingkat.			3	MODERATE	E	3.2	-	-	-	-	-	-1.6	1.6	×
		v) Kuarters Kolej Vokasional Lahad Datu - 5 tingkat.			5	MODERATE		3.2	0.2	-	-2.0	-	-	-1.6	-0.2	×

SUMMARY OF FINDINGS CONTINUE...

Building Benchmark

□Vertical Irregularity ■Plan Irregularity ■Pre-code

□Soil Type D ■Soil Type E

DETERMINING THE FINAL SCORE

S Score of 2 is suggested as "cut off" based on present seismic design criteria.

Interpretation of RVS Score

Estimates of the score are based on limited observed and analytical data, and the probability of collapse. For example,

A final score of S = 3 implies there is a chance of 1 in 10³, or 1 in 1000, that the building will collapse if such ground motions occur.

A final score of S = 2 implies there is a chance of 1 in 10^2 , or 1 in 100.

Note:

-Use of a higher cut-off *S* value implies greater desired safety but increased community-wide costs for evaluations and rehabilitation.

SUMMARY OF FINDINGS

Total buildings for rapid screening process (FEMA-154) = 54

Nos of building having RVS Score ≥2.0 : 20 Nos of building having RVS Score <2.0 : 34 (to proceed with Tier 1 analysis using ASCE checklist)

Tier 1 : Screening process using ASCE Checklist

 $[\]square$ RVS Score ≥ 2.0 **\square** RVS Score < 2.0

Vertical Irregularity

ASCE STANDARD

ASCE/SEI

ASCE 41-13

Seismic Evaluation and Retrofit of Existing Buildings

Seismic Evaluation and Retrofit of Existing Buildings

This document uses both the International System of Units (SI) and customary units

TIER 1 ANALYSIS

SCOPE OF WORKS

- Preparing computer models to represent the building main frames according to the structural drawings and material properties.
- Applying the earthquake loads statically combined with the dead and life loads to estimate the structural adequacy of the structure.
- Implementing response spectrum analysis to study the performance of the building dynamically.
- Analysing non-linear model by applying a series of seismic loadings to determine the failure mechanism and to determine the critical components for retrofitting purpose.
- Develop demand-capacity curve for buildings. Evaluation of the capacity curve by any suitable nonlinear analysis software for the investigated buildings are to be derived in term of acceleration capacity, performance points and expected damage of building.
- Develop fragility curve for buildings. The capacity spectrum parameters obtained from above analysis is then used in fragility evaluation for the development of fragility curves.

Basic Performance Objective for Existing Buildings (BPOE)

BPOE- The Basic Performance Objective for Existing Buildings is a specified performance objective that varies with Risk Category (Ref. Table 2.1)

BSE - Basic Safety Earthquake for use with the Basic Performance Objective for <u>Existing</u> Buildings.

Structural Performance Levels and Ranges

(S-1)-	Immediate Performance	Occupancy E Level	Structural
(S-2)-	Damage Performance	Control e Level	Structural
(S-3)-	Life Safety Level	Structural Pe	erformance
(S-4)-	Limited Performance	Safety e Level	Structural
(S-5)-	Collapse Performance	Prevention e Level	Structural
(S-6)-	Structural Considered	Performan	ce Not

is defined as the postearthquake damage state which а structure in remains safe to occupy and essentially retains its pre-earthquake strength and stiffness. A structure in compliance with the acceptance criteria of this standard for Immediate Occupancy is expected to achieve this postearthquake state.

is defined as the postearthquake damage state in which a structure has damaged components but retains a <u>margin against</u> the onset of partial total collapse. A structure in compliance with the acceptance criteria specified in this standard this for Structural Performance Level is expected to achieve this state.

Performance Objectives

Table C2-1. Probabililty of Exceedance and Mean Return Period

Table C2-2. Performance Objectives

Probability of	Mean	Target Building Performance Levels								
	Period (years)	Seismic Hazard Level	Operational Performance	Immediate Occupancy	Life Safety Performance	Prevention Performance				
50%/30 years	43		Level (1-A)	Level (1-B)	Collapse	Level (5-D)				
50%/50 years	72									
20%/50 years	225	50%/50 yrs	а	b	С	d				
10%/50 years	475	BSE-1E (20%/50yr)	е	f	g	h				
5%/50 years	975	BSE-2E (5%/50yr)	i	j	k	I				
2%/50 years	2,475	BSE-2N (ASCE 7 MCER)	m	n	ο	р				

Table 2-1. Basic Performance Objective for Existing Buildings (BPOE)

	Tier 1a	Tier 2a	Tier 3				
Risk Category	BSE-1E	BSE-1E	BSE-1E	BSE-2E			
I & II	Life Safety Structural Performance	Life Safety Structural Performance	Life Safety Structural	Collapse Prevention Structural			
	Life Safety Nonstructural	Life Safety Nonstructural	Performance Life Safety	Performance Nonstructural			
	Performance (3-C)	Performance (3-C)	Nonstructural Performance (3-C)	Performance Not Considered (5-D)			
III	Structural Performance Position	Structural Performance Position	Structural Performance Position	Limited Safety Structural			
	Retention Nonstructural	Retention Nonstructural	Retention Nonstructural	Performance Nonstructural			
	Performance (2-B)	Performance (2-B)	Performance (2-B)	Performance Not Considered (4-D)			
IV	Immediate Occupancy Structural	Immediate Occupancy Structural	Immediate Occupancy Structural	Life Safety Structural Performance			
	Performance Position Retention	Performance Position Retention	Performance Position Retention	Nonstructural Performance Not			
	Nonstructural Performance (1-B)	Nonstructural Performance (1-B)	Nonstructural Performance (1-B)	Considered (3-D)			
I & II	Life Safety Structural Performance	Life Safety Structural Performance	Life Safety Structural	Collapse Prevention Structural			
	Life Safety Nonstructural	Life Safety Nonstructural	Performance Life Safety	Performance Nonstructural			
	Performance (3-C)	Performance (3-C)	Nonstructural Performance (3-C)	Performance Not Considered (5-D)			

Proposed Tier 1 Screening

- Basic Checklist LS- Life Safety IO- Immediate Occupancy

16.1	Basic Ch	necklist .
16.1.2	LS	Life Safety Basic Configuration Checklist
16.1.2	IO	Immediate Occupancy Basic Configuration Checklist

No.	Code	Building Types
1.	C1	Concrete Moment Frames
2.	C2 C2a	Concrete Shear Walls with Stiff Diaphragms Concrete Shear Walls with Flexible Diaphragms
3.	C3 C3a	Concrete Frames with Infill Masonry Shear Walls and Concrete Frames with Infill Masonry Shear Walls and Flexible Diaphragms
4.	PC1 PC1a	Precast or Tilt-Up Concrete Shear Walls with Flexible Diaphragms and Precast or Tilt-Up Concrete Shear Walls with Stiff Diaphragms
5.	PC2	Precast Concrete Frames With Shear walls
6.	PC2a	Precast Concrete Frames without Shear Walls

Level of Seismicity - SDs,SD1

Table 2-5. Level of Seismicity Definitions

Level of Seismicity	SDS	SD1
Very low	< 0.167 g	< 0.067 g
Low	≥ 0.167 g < 0.33 g	≥ 0.067 g < 0.133 g
Moderate	≥ 0.33 g < 0.50 g	≥ 0.133 g < 0.20 g
High	≥ 0.50g	≥ 0.20 g

*The higher level of seismicity defined by SDS or SD1 shall govern

 $SDS = 2/3 F_a S_S$

 $SD1=2/3 F_v S_1$

Where:

 S_s =response spectrum ordinates for short (0.2 s) and S_1 =long (1 s) periods, in the direction of maximum horizontal response.

Site Classes

1. Site Class A: Hard rock with average shear wave velocity,

vs > 5,000 ft/s ;

- 2. Site Class B: Rock with 2,500 ft/s < vs < 5,000 ft/s ;
- 3. Site Class C: Very dense soil and soft rock with 1,200 ft/s < $vs \le 2,500$ ft/s or with either standard blow count N > 50 or undrained shear strength su > 2,000 lb/ft²;
- 4. Site Class D: Stiff soil with 600 ft/s< $vs \le 1,200$ ft/s or with $15 < N \le 50$ or 1,000 lb/ft² $\le su < 2,000$ lb/ft²;
- 5. Site Class E: Any profile with more than 10 ft of soft clay defined as soil with plasticity index PI > 20, or water content w > 40%, and su < 500 lb/ft² or a soil profile with vs < 600 ft/s ; and
- 6. Site Class F: Soils requiring site-specific evaluations:
 - A. Soils vulnerable to potential failure or collapse under seismic loading, such as liquefiable soils, quick and highly sensitive clays, or collapsible weakly cemented soils;
 - B. Peats or highly organic clays (H > 10 ft of peat or highly organic clay, where H = thickness of soil);
 - C. Very high plasticity clays (H > 25 ft with PI > 75); or
 - D. Very thick soft or medium-stiff clays (H > 120ft).

TIER 1 : SCREENING PROCESS (ASCE Checklist)

16.1 BASIC CHE Very Low Seismi Structural Comp C NC N/A

- COMPLETE THE BASIC • CONFIGURATION CHECKLIST (Quick Check)
 - LIFE SAFETY (LS) IMMEDIATE
 - OCCUPANCY (IO)

- COMPLETE THE BUILDING SYSTEM STRUCTURAL CHECKLIST (Quick Check) FOR TYPES C3
 - LIFE SAFETY (LS) IMMEDIATE • OCCUPANCY (IO)

Note:

✓ School & Hospital need to proceed both LS & IO

Project: Flat Guru	SK Kibabaig	Location:	_				
Completed by:		_ Date:	-				
TIER 1 CHECKLISTS							
16.1 BASIC CHECKLIST Very Low Seismicity Structural Components							
ONC NA U	LOAD PATH: The structure sh and connections, that serves ' building to the foundation. (C	nall contain a complete, well-defined load path, including st to transfer the inertial forces associated with the mass of / commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	tructural elem all elements c	rents of the			
C (NC) N/A U	WALL ANCHORAGE: Exteric	or concrete or masonry walls that are dependent on the dir	anhraom for le	atorol			
\cup	support are anchored for out dowels, or straps that are de	t-of-plane forces at each diaphragm level with steel a aveloped into the diaphragm. Connections shall have a	F	Project:			Location:
	resist the connection force ca Sec. A.5.1.1. Tier 2: Sec. 5.7.	alculated in the Quick Check procedure of Section 4.5 .1.1)	c	Compler	ted by: _		 Date:
			1) L E	6.1.2LS .ow Sei Buildin Genera	S LIFI ismicity g Syster	E SAFET n	TY BASIC CONFIGURATION CHECKLIST
			c	3 NC	N/A	U	LOAD PATH. The structure shall contain a complete, well defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)
			0) NC	N/A	U .,	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement shall not apply for the following building types WI, WIs, and WZ. (Commersiary: Sec. A.2.12. Ter.2. Sec. 5.4.12)
) NU	NA	U	MEZ2ANINES: Interior mezzanine levels are braced independently from me main structure or are sincurve- to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)
			[₿]	3uilding	Configu	ration	
			Ċ) NC	N/A	U	WEAK STORY: The sum of the shear strengths of the selismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2. Sec. 5.4.2.1)
			c) NC	N/A	U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)
			c) NC	N/A	U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A 2.2.4. Tier 2: Sec. 5.4.2.3)
			c) NC	N/A	U	GEOMETRY: There are no changes in the net horizontal dimension of the seismio-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary, Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)
			c) NC	N/A	U	MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs, perthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)
			C) NC	N/A	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)
			N C	fodera ⁴ Geologi	te Seism ic Site H	nicity: Co lazards	omplete the Following Items in Addition to the Items for Low Seismicity. $\hfill \square$
			c) NC	N/A	U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building 's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)
			c) NC	N/A	U	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or tooklals to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)
				A NC	 N/A 		SURFACE FAULT RUPTURE: Surface fault runture and surface displacement at the building site are not

TIER 1 : SCREENING PROCESS

From ASCE Checklist & Summary Data Sheet will give a conclusion which building need to proceed with Dynamic Analysis

-	Kibabaig Date	27 January 2016			
Building Address: 89500 Pen	ampang, Sabah				
Latitude: '05°55'0	02.416" Longitude: '110	6°06'33.063"	By:		
Year Built: unknown	Year(s) Remodeled:		Original I	Design Code: Un	hknown
Area (m²): 252±	Lenath (m): 28± Widt	th (m): 9±	-		
No. of Storios: 5 tunical	Story Height: 2 m	Total Height 15.	5 m		
No. or orones. <u>o typicar</u>	alory neight. <u>om</u>				
USE Industrial	Ware Ware	ehouse Hospita	al 🔄	Residential	Other:
CONSTRUCTION DATA					
Gravity Load Structural Syste	m: <u>Reinforced concrete column and</u>	d beam; brick walls			
Exterior Transverse Wa	Ils: Unreinforced Brick	Ope	enings?	NO	
Exterior Longitudinal Wa	Ils: Unreinforced Brick	Op	enings?	NO	OK-
Roof Materials/Frami	ng: Metal roof decking supported by	v		5	
Intermediate Floors/Frami	ing: Reinforced concrete		+2	<u> </u>	
Ground Flo	oor: _slab on grade; void; reinforced o	xoncrete jolumn			
Colum	ns: Reinforced concrete column		Foundat	ion: unkn	own
General Condition of Struct	ure: Good	1			
Level Below Gra					
Special Features and Con me	nts: N/A				
LATERAL-FORCE-RESISTI	NG SYSTEM				
LATERAL-FORCE-RESISTI	NG SYSTEM			Transverse	
LATERAL-FORCE-RESISTI	NG SYSTEM Longitudinal		Unreinford	Transverse ed masonry she	ar wall
LATERAL-FORCE-RESISTII System: Vertical Elements:	VG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick	c walls	Unreinforce	Transverse ed masonry she d Concrete colun	ar wall nn / brick walls_
LATERAL-FORCE-RESISTII System: Vertical Elements: Diaphragms:	VG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck	cwalls	Unreinford Reinforcer Brick wall,	Transverse ed masonry she d Concrete colun and metal deck	ar wall nn / brick walls
LATERAL-FORCE-RESISTII System: Vertical Elements: Diaphragms: Connections:	VG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck Eixed	: walls	Unreinforce Reinforcer Brick wall, Fixed	Transverse ed masonry she d Concrete colun and metal deck	ar wall an / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA	VG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck Fixed	: walls	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she d Concrete colun and metal deck	ar wall n / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spertra Response	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck Fixed	: walls	Unreinforce Reinforcer Brick wall, Fixed	Transverse ed masonry she d Concrete colun and metal deck	ar wall nn / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration:	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck Fixed Sos = Sos =	: walls	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she I Concrete colun and metal deck	ar wall n / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors:	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck	: walls 	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she d Concrete colun and metal deck	ar wall n / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors:	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck	: walls E_= 3.5	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she i Concrete colum and metal deck	ar wall n / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors:	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck	: walls 	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she i Concrete colum and metal deck	ar wall n / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors:	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck	: walls	Unreinforce: Reinforce: Brick wall, Fixed	Transverse ed masonry she d Concrete colum and metal deck	ar wall nn / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors: Modification Factor:	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck Fixed Sos = Sos = Class = C., C., C. =	: walls F =3.5 pht: W =2593.2 kM	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she i Concrete colun and metal deck	ar wall nn / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors: Modification Factor: Pseudo Lateral Force:	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck Fixed Fixed Sos = Sos = 0.034 Class = E C_, C, C_s = Building Weig V = V	: walls F =3.5 pht W =2593.2 kM	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she i Concrete colun and metal deck	ar wall nn / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors: Modification Factor: Pseudo Lateral Force:	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck Fixed Sos = Sos = Class = C.,C.,C., = W =	: .walls 	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she i Concrete colun and metal deck	ar wall nn / brick walls
LATERAL-FORCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors: Modification Factor: Pseudo Lateral Force: BUILDING CLASSIFICATION	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck	:	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she i Concrete colun and metal deck	ar wall nn / brick walls
LATERAL-FÜRCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors: Soil Factors: Displactors: BUILDING CLASSIFICATION REQUIRED TIER 1 CHECKL	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck	: walls 	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she i Concrete colun and metal deck	ar wall nn / brick walls_
LATERAL-FÜRCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors: Modification Factor: Pseudo Lateral Force: BUILDING CLASSIFICATION REQUIRED TIER 1 CHECKL Basio Configuratio	NG SYSTEM Longitudinal Unreinforced masonry shear wall Reinforced Concrete column / brick Brick wall, metal deck Fixed Fixed	: .walls 	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she 2 Concrete colum and metal deck	ar wall n / brick walls_
LATERAL-FÜRCE-RESISTI System: Vertical Elements: Diaphragms: Connections: EVALUATION DATA BSE-1N Spectra Response Acceleration: Soil Factors: Modification Factor: Pseudo Lateral Force: BUILDING CLASSIFICATION REQUIRED TIER 1 CHECKL Basic Configuratii Building Type <u>C3</u>	NG SYSTEM	- E_ = 3.5 ht: W =	Unreinforce Reinforces Brick wall, Fixed	Transverse ed masonry she i Concrete colun and metal deck	ar wall n / brick walls

APPENDIX C SUMMARY DATA SHEET

APPENDIX C SUMMARY DATA SHEET

BUILDING DATA					
Building Name:				Date:	
Building Address:					
Latitude:		Longitude:		By:	
Year Built:	Year(s)	Remodeled:	(Driginal Design Code:	
Area (sf):		Length (ft):		Width (ft):	
No. of Stories:	S	tory Height:		Total Height:	
USE Industrial Office Ware	house 🗆 H	ospital 🗌 Reside	ential 🗌 Educatio	nal 🗌 Other:	
CONSTRUCTION DATA					
Gravity Load Structural System:					
Exterior Transverse Walls:				Openings?	
Exterior Longitudinal Walls:				Openings?	
Roof Materials/Framing:					
Intermediate Floors/Framing:					
Ground Floor:					
Columns:				Foundation:	
General Condition of Structure:					
Levels Below Grade?					
Special Features and Comments:					
LATERAL-FORCE-RESISTING SYSTEM					
		Longitudinal		Transv	erse
System					
Vertical Elements:					
Dianhraems					
Connections:					
BSE-1N Spectral Response					
Accelerations:	$S_{Ds} =$			S _{D1} =	
Soil Factors:	Class =			F_s =	F _v =
BSE-1E Spectral Response	5 -			s –	
Level of Seismicity:	$2\overline{x} =$		Derforma		
Building Period:	<i>T</i> –		renorma	ICC LEVEL	
Spectral Acceleration:	s -				
Modification Factor	C C C =		Building Weis	aht: W -	
Pseudo Lateral Force:	$V_{=}$		istinuing weig	sut. W =	
r soudo Estera r oree.	C_C.C.S.W=				
BUILDING CLASSIFICATION:	0,010,010,0111-				
		M	N-		
Regulated Tier 1 CheckLists		Yes			
Basic Configuration Checklist	at				
Nenetructural Commence of Checkling	51	H			
Nonstructural Component Checklist					
FURTHER EVALUATION REQUIREMENT:					
Seismic Evaluation and Retrofit of Existin	ng Buildings				

Project:	Location: Date:		
TIER 1	CHECKLISTS		
 16.1 BASIC CHECKLIST Very Low Seismicity Structural Components C NC N/A U LOAD PATH: The structure shall conta	in a complete, well-defined load path, including structural elements		
and connections, that serves to transfer	the inertial forces associated with the mass of all elements of the		
C NC N/A U WALL ANCHORAGE: Exterior concre	ry: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)		
support are anchored for out-of-plane for	the or masonry walls that are dependent on the diaphragm for lateral		
straps that are developed into the diaph	process at each diaphragm level with steel anchors, reinforcing dowels, or		
force calculated in the Quick Check pro-	ragm. Connections shall have adequate strength to resist the connection		
Sec. 5.7.1.1)	procedure of Section 4.5.3.7. (Commentary: Sec. A.5.1.1. Tier 2:		

16.1.2LS LIFE SAFETY BASIC CONFIGURATION CHECKLIST

Low Seismicity

Building System

General

- C NC N/A U LOAD PATH: The structure shall contain a complete, well defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)
- C NC N/A U ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement shall not apply for the following building types: W1, W1a, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)
- C NC N/A U MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)

Building Configuration

- C NC N/A U WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)
- C NC N/A U SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)
- C NC N/A U VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)
- C NC N/A U GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)
- C NC N/A U MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)
- C NC N/A U TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)

Moderate Seismicity: Complete the Following Items in Addition to the Items for Low Seismicity.

Geologic Site Hazards

- C NC N/A U LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)
- C NC N/A U SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)
- C NC N/A U SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)

WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above.

Reduction of column sizes at upper floors

Assuming all columns having same concrete strength, generally can be calculated by

 $\frac{\sum A_{col} Upper floor}{\sum A_{col} Lower floor} \times 100\%$

SOFT STORY: The stiffness of the seismic-force resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above.

Or by examination of story drift if detail analysis are available

EXAMPLE OF BUILDING : FLAT GURU SK KIBABAIG PENAMPANG SABAH.

LOCATION OF BUILDING & MICROZONING MAP

Common units of acceleration -Standard gravity, g -Gal or cm/s²

 m/s^2

 m/s^2

≈0.0102

9.80665

Gal

980.665

Standard

gravity, g

0.00101972

25gal= 0.0255g

Demand-Capacity Analysis

- Demand Curves based on
 - Response Spectra based on Akedemi Sains Malaysia Study 2007
 - Response Spectra based on recent study between UTM-MOSTI 2015
 - Response Spectra based on draft NA MS EN 1998
- Capacity Curves are calculated using Pushover Analysis (Non-linear Static)

Demand-Capacity Analysis

Capacity Curve by Pushover Analysis IO- Immediate Occupancy LS- Life Safety CP- Collapse Prevention

Capacity and Demand Curve

Demand-Capacity Analysis

×

Pushover Curve

ot Type		100		Capacity Spectrum vs. De	mand Spectrum
Capacity Curve (MD	OF)				
C Base Shear vs	. Displacement		0.20		
C Shear Coeffici	ent vs. Displacemer	t)	0.24	/	
C Shear Coeffici	ent vs. Drift		0.22	نفذ الما الم	Caracter and the second s
C Load Factor vi	s Displacement			1 prover	
Additional Cur	ves at Other Nodes		8		
0 0	0	p	0.10 - E		
Capacity Spectrum	(SDOF)	14	윤 0.16 ·		
For Performan	ce Point (FEMA)		0.14		
C For Target Dis	placement (EC8/Ma	sonry)	¥ 0.12 -	1 / / / / /	
C For Target Dis	placement (NTC200	8)	至 0.1 - 1 /	// /	
			0.08 - /		
mand Spectrum		2	0.00		
Defi	ne Elastic Spectrum				
Demand Spectra	at Damping Ratios (%)			
5 10	15	20			
Constant Period I	ines at Periods (se	-1	0 0.02	0.04 0.05 0.08 0.1 0.12	0.14 0.15 0.18 0.2 0.22
	I E			Spectral Displacem	ent(Sd)
10:0	11.5	14	The state states of	- 11.2	
Evaluation of Perfo	rmance Point	54 M	Description for Printed	Output	
Procedure-	A C Pro	cedure-B			
			Performance Point		Graph Display Option
Damping Parameters			Displ. Control Node:	Background Color	
inherent + Addition	al Damping (%)	5	Load Pattern: Mode	Shape	Black White
Structural Behavior	Туре	в	V,D	Elastic	Change Graph Title
and ormation Factor	(Gamma) Calm Lati		Sa,Sd	Elastic	Change Graph Range
Rased on 20 Behu	wor (ECR-1:2004	innex 81	Teff,Deff	1.253, 5	Construction of the
Based on 3D Behr	wide	ANGES ST.			Save Window As *.bmp
7 Based on 30 Beha	wice	ANDESSE:			Dave Window As *.Dmt

Develop Fragility Curves

To determine the probability of failure of a structure

Future Developement

- JKR will also be actively involve with the remaining parts of MS EN 1998. Namely the National Annex for the MS EN 1998 Part 3 – Assessment and Retrofitting of Buildings.
- Looking into easier and faster assessment of standard buildings based on future studies based on fragility curves.
- Looking into retrofitting engineering.

Concluding Remarks

- What is Structural Engineer?
- What is Software Operator?
- Di manakah saya berada?

Product of a software operator!!!

Terima kasih