

Table of Contents

1.0	TEST	ING, ADJUSTING, BALANCING & COMMISSIONING	
	REQL	JIREMENTS	3
1.1	GENER	AL	3
1.2	INSPEC	CTION AND TESTING PLAN (ITP)	3
1.2	.1 Pre	e Delivery Stage	6
1	1.2.1.1	Switchboard Factory Test	6
1.2	.2 De	livery Stage	7
1.2	.3 Ins	stallation Stage	7
1	1.2.3.1	Visual Inspection	8
1	.2.3.2	Hydrostatic Pressure Test	8
1	.2.3.3	Pipe Flushing and Water Treatment	9
1	.2.3.4	Duct Leak Test and Duct Flushing	
1	.2.3.5	LV Motors, Switch Gears and Cabling Insulation Test	
1	.2.3.6	Cable Continuity Test	
1	.2.3.7	Pipe Gradient Test	
1.2	.4 Fu	nctional Performance Test	
1	1.2.4.1	Pre-Functional Performance Test	
1	.2.4.2	Water Cooled Package (WCP) Test	
1	.2.4.3	Switchboard and Power Supply	
1	.2.4.4	Air Distribution	21
1	.2.4.5	Infiltration Test	
1	.2.4.6	Wall Insulation and Sprayed PU Foam Insulation Effectiveness Test	
1	.2.4.7	Mechanical Ventilation Test	
1.3	СОММІ	SSIONING	24
1.3	.1 Ha	nding Over Documents	24
1.3	.2 Sy	stem Familiarisation Program	
2.0	POST	OCCUPANCY EVALUATION	
3.0	TEST	ING INSTRUMENTS & ACCESSORIES	
			····· ··

List of Tables

Table 1: Sample of Inspection and Testing Plan	5
Table 2: Switchboard Testing	7
Table 3: Test List In Installation Stage	8
Table 4: Treatment Process and Function	9
Table 5: Water Quality	12
Table 6: WCP Inspection and Test	15
Table 7: WCP Performance Variables	17
Table 8: WCP Operating Variables	18
Table 9: WCPU Control Test Requirements	19
Table 10: Switchboard and Power Supply Inspection and Test Requirements	20
Table 11: Air Distribution System Inspection and Test Name	21
Table 12: Mechanical Ventilation System Inspection and Test Name	23
Table 13: Fan Control Test List	24
Table 14: Post Occupancy Evaluation Form	26
Table 15: Test Instruments	

1.0 TESTING, ADJUSTING, BALANCING & COMMISSIONING REQUIREMENTS

1.1 GENERAL

This section specifies the requirements for all testing, adjusting, balancing and commissioning (TABC) of mechanical works to be carried out under the contract. The objectives of TABC are:

- i. To verify delivered materials are as per approved specification and good physical condition.
- ii. To verify the installation works are carried out in accordance with specification and good engineering practises.
- iii. To verify the performance in terms of functionality, safety, maintainability and operation ability of the installed equipment/systems meet the specified design intent through a series of tests and adjustments.
- iv. To ensure all test result are systematically recorded and verified prior to system commissioning.

TABC works are divided into four stages as the following;

- i. Pre Delivery stage.
- ii. Delivery stage.
- iii. Installation stage.
- iv. Functional Performance Test stage.

Contractor shall submit Inspection and Testing Plan (ITP) of TABC works to be carried out in accordance with this specification for Superintending Officer's (S.O) review and approval.

1.2 INSPECTION AND TESTING PLAN (ITP)

ITP shall consist of;

i. List of All TABC Requirement

All TABC works with specific scope and boundaries shall be clearly stated at every stage of TABC works.

ii. <u>TABC Work Schedules</u>

TABC work schedules shall be integrated into main project schedules.

iii. Method Statements

TABC method statements shall consists of TABC procedures, responsibilities, necessary tools, measuring equipment and accuracy, consumables and acceptance criteria. Type of test required is listed in Schedule of Inspection and Testing.

Method statements and acceptance criteria for all equipment installation stage inspection and functional performance testing shall be endorsed by manufacturer or manufacturer's valid representative.

Acceptance criteria shall be stated as per Schedule of Design Requirements, technical specification or any applicable standards.

ITP shall be updated for any changes and resubmitted to the S.O/S.O's representative for approval.

Prior to the commencement of the TABC works as per approved ITP, contractor shall issue Request For Inspection and Testing (RFIT) to the S.O. During the TABC, contractor shall have his supervising foreman and mechanics available to aid the testing and to perform any adjustments as directed. The TABC works shall be carried out under the direction of experienced personnel and witnessed by S.O or S.O's representatives. No subsequent installation works shall proceed without S.O's approval of the test result.

Depending on the specific demands of individual installation, S.O's Representative may require additional or substitute testing works in regard to any elements in the installation other than those indicated in this specification

Stage	Inspection / Test Name	Scope and Boundaries	Responsibility	Method Statement	Test Form no	Expected Date
Pre Delivery Stage	Switchboard/ Control Panel Factory Test	Main Switch Board / Control Panel	Manufacturer	MS-ITP- PDI-01	TF-01	17-Feb
	Equipment Verification and Physical Inspection	Water Cooled Package Unit (WCP-01)	Contractor	MS-ITP- PDI-02	TF-02	17-Mar
Delivery Stage	Equipment Verification and Physical Inspection	Water Cooled Package Unit (WCP-02)	Contractor	MS-ITP- PDI-03	TF-03	17-Mar
	Equipment Verification and Physical Inspection	Water Cooled Package Unit (WCP-03)	Contractor	MS-ITP- PDI-04	TF-04	17-Mar
	Visual Inspection	Equipment, piping, ductwork, support & hanger	Contractor	MS-ITP- PDI-05	TF-05	17-May
	Hydrostatic Pressure Test	Condenser water pipe	Contractor	MS-ITP- PDI-06	TF-06	19-May
Installation	Pipe Flushing and Water Treatment	Condenser water pipe	Contractor	MS-ITP- PDI-07	TF-07	17-Jun
Stage	Duct Leak Test	High Pressure above 750 Pa only	Contractor	MS-ITP- PDI-08	TF-08	17-Jan
	Cable Continuity and Insulation	All LV cable	Contractor	MS-ITP- PDI-09	TF-09	17-Jan
	Gradient Pipe Test	Condensate drain pipe	Contractor	MS-ITP- PDI-10	TF-10	17-Jan
Functional	Water Cooled Package Start-up Test	Water Cooled Package Unit	Manufacturer	MS-ITP- PDI-11	TF-11	18-Feb
Performance Stage	Water Cooled Package Performance Test	Water Cooled Package Unit	Contractor	MS-ITP- PDI-12	TF-12	18-Feb

Table 1: Sample of Inspection and Testing Plan

1.2.1 Pre Delivery Stage

Pre-delivery inspection and performance test shall be conducted if stated in the Schedule of Inspection and Testing requirements. These tests shall be witnessed by the government's representative if deemed necessary by the S.O. All travelling, food and accommodation cost of the government's representatives related to witnessed performance test shall be borne by the government.

A factory test is understood to mean testing at a dedicated test facility, often at manufacturer's plant or at an independent and accredited test facility and to be agreed by the S.O.

Performance test method statement, test standard and acceptance criteria shall be submitted to S.O for approval prior to such testing. The manufacturer shall produces a signed test report to be submitted for S.O's approval. Manufacturer shall be responsible for any reworks and adjustment of the equipment if the test results fail to comply with the approved acceptance criteria.

1.2.1.1 Switchboard Factory Test

Switchboard pre-delivery acceptance test shall be carried out before delivery to site. The main circuits and the auxiliary circuits shall be tested to verify dielectric properties with power-frequency test voltage of 2500Vac for 1 minute and insulation resistance under test voltage of 1000V. Switchboard testing shall include inspection and checking of wiring, electrical continuity, functionality of the protective circuits, connections and effectiveness of mechanical actuating elements and logic circuit interlock. Test Results or Certificate duly certified by Competent Person as in Electricity Regulations 1994 shall be issued for every switchboard supplied and installed.

Type testing for switchboard as per categorization shall be as per Table 2.

Category	Current Rating	Registration and type of test report
I	I ≤ 600 A	Suruhanjaya Tenaga
11	600 A ≤ I ≤ 1200 A	Suruhanjaya Tenaga & Partial Type Test in accordance with MS IEC 60439-1 (i) Short Circuit Test (ii) Temperature Rise Test
111	I ≥ 1200 A	Suruhanjaya Tenaga & Full Type Test in accordance with MS IEC 60439-1

Table 2: Switchboard Testing

1.2.2 Delivery Stage

All incoming material and equipment to site shall be inspected to verify that delivered items are complying with contract specification, as per approved materials and good physical conditions. Materials delivered to site shall be free from defects and adequately protected against site conditions.

1.2.3 Installation Stage

List of inspection and testing works during installation as per Table 3.

Inspection / Test Name	System / Component	Objectives
Visual Inspection	Equipment, piping, ductwork, support and hanger, etc.)	Verify that all installation as per Technical Specification and drawings.
Hydrostatic Pressure Test	Condenser water pipe	Verify integrity of all pipe joints and fittings.
Pipe Flushing and Water Quality Test	Condenser water pipe	Verify that all pipes are internally clean and water quality is acceptable.
Duct Leak Test and Duct Flushing	Ductwork	a) Verify integrity of all duct joints and fittings.b) Verify that all ducts are internally clean.
LV Motors, Switch Gears and Cabling Insulation Test	LV Motors, Switch Gears and Cabling	Verify insulation effectiveness.
Cable Continuity Test	Electrical Cabling	Verify cable continuity effectiveness.
Pipe Gradient Test	Condensate drain pipe	Verify condensate drain pipe gradient as per specification.

Table 3: Test List In Installation Stage

1.2.3.1 Visual Inspection

All installation shall be subjected to technical specifications and drawings.

1.2.3.2 <u>Hydrostatic Pressure Test</u>

All pipes, valves, fitting, etc. shall be tested to the minimum of 1.5 times the working pressure or 690 kPa (100 psig), whichever is greater for period of 48 hours. During this period pressure readings as well as the ambient temperature shall be taken at intervals of 3 hours or using chart recorder. All tests shall be done in accordance to ASME B31.9 or equivalent.

During the pressure test, all welding joints, bends, fitting and valves shall be visual checked for any leaks or deformations for the entire piping system. Expanded conditions of all piping shall be carefully studied and any necessary change in hangers, anchors or guide locations shall be made.

Prior to pressure test, the contractor shall release air trapped in the pipeline system. Pressure drop for hydrostatic pressure test is not more than 5% from the tested value for the period of testing.

1.2.3.3 Pipe Flushing and Water Treatment

Contractor shall appoint water treatment specialist to carry out pipe flushing and water treatment work. Appointment of water treatment specialist must be approved by S.O. Treatment process and function is as per Table 4.

Process	Function	Application
Dispersant, Descaling And Sludge Remover	To remove deposits, iron oxides, sludge and oil contamination.	Condenser water pipes
Corrosion/Scale Inhibitor & Oxygen Scavenger	To inhibit corrosion of metals in contact with condenser water upon completion of chemical flushing.	Condenser water pipes
Biocide	To control microbiological growth (algae, slime, fungi and bacteria growth on the cooling tower infill, cold water basin and hot water basin).	Condenser water pipe

Table 4: Treatment Process and Function

Pipe flushing and treatment method statement shall be submitted to S.O for approval with the following information;

- i. Scope of pipe flushing and water treatment
- ii. Procedures:
 - Cleaning procedures, flow rates, elapsed time.
 - Type chemicals and concentrations.
 - Inhibitors and concentrations.
 - Any specific requirements i.e. allocation of drain valves, air vent etc.
 - Effluent discharge method
 - Complete analysis of water to be used to ensure water will not damage systems or equipment.
- iii. Material Safety Data Sheet (MSDS) for the chemicals
- iv. Acceptance criteria (Cleanliness level)

a. General Requirements

All water pipe systems shall be flushed according to the requirements of this specification or complying with water treatment specialist (whichever higher).

Pre-requisite

- i. All fabrication, welding and non-destructive examination shall be completed and accepted before the flushing procedure
- ii. Pipe hydrostatic pressure test has been carried out and verified.
- iii. All water cooled package unit (WCPU), heat exchangers or any other clogged prone equipment shall be isolated or temporarily removed from the system. Equipment without incoming pipe strainer shall be temporarily installed with by-pass pipes to enable water circulation.
- iv. Vents and other connections that can serve as vents shall be open during filling so that all air is vented prior to the application of flushing procedure.
- v. Pot Feeder complete with necessary shut off valves, drain and air release valves, and system connections shall be provided by the contractor, for introducing chemicals into system. Pot feeder shall be either insulated cast iron or insulated galvanised steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be 18.9 L (five gallon) minimum capacity at 860 kPa (125 psig) minimum working pressure.
- b. Stage of Flushing

i. <u>1st stage: Fresh Water Online Flushing (Debris Removal)</u>

Water pipes shall be filled with fresh water from water mains and circulated in the water pipe via water pumps. Make up water valve and drain valve shall be open concurrently. Collect sample and do water analysis at interval of an hour during process until the following water condition is obtained.

pH:	7.0 - 8.0
Conductivity:	< 200 $\mu S/cm$ (micro-Siemen per cm: the measure of dissolve solid concentration which has been ionized in water)
Turbidity:	< 50 NTU (nephelometric turbidity unit)
Total Iron:	< 5 ppm

When above water quality is achieved or as recommended by water treatment specialist, the water then shall be drained entirely and proceed to next process. All strainers shall be checked and cleaned before proceeding to 2nd stage flushing.

ii. 2nd stage: Chemical Flushing

Water pipes shall be refilled with fresh water before adding up dispersant, descaling and sludge remover in the required quantity and circulated for a period of 48 hrs or as per water treatment specialist recommendation whichever longer. Collect sample and do water analysis at interval of an hour until the maximum turbidity level is achieved. (Maximum turbidity level is considered when turbidity level is stabilized at peak values with 3 readings. The water then shall be drained entirely and all strainers shall be cleaned.

The water shall then be refilled with fresh water and carry out online flushing. Collect sample and do water analysis at interval of an hour until the following water condition is obtained.

Conductivity < 200 μ S/cm

Turbidity < 20 NTU

Total Iron < 5 ppm

When above water quality is achieved, proceed to next stage.

All chemicals shall be safe for discharge to sanitary sewer.

iii. <u>3rd stage: Passivation (Corrosion Control)</u>

Water pipe passivation shall be carried out by adding chemical inhibitors as per water treatment specialist recommendation until nitrite level reach min level of 1200 ppm. These inhibitors act to form a thin protective oxide film on the metal surface. Nitrites and molybdates inhibitors may be used.

iv. <u>4th stage: Microbiological Control (Biocide)</u>

Add in biocide as per water treatment specialist recommendation to control the microbiological growth. Maintain the maximum recommended biocide residual (for the specific biocide) for a period sufficient to bring the system under good biological control (residual and time varies with the biocide).

c. Test Equipment, Apparatus and Chemical Dosing Facilities

The contractor shall provide test equipment and apparatus for evaluating the water quality describe as below:

- Spectrophotometer inclusive reagents and high index sample cell.
- pH meter
- Electrical conductivity meter

- Graduated burette inclusive reagents
- Dip slide bacteria kit
- Graduated beaker, measuring cylinder and conical / volumetric flask
- Test tubes, filter paper, funnel, sampling bottles, etc.

The chemical dosing facilities used are as per below:

- 1) Filter vessel
- 2) Personnel protective equipment (PPE) for chemical handling

d. Final Water Quality

Water quality test shall be carried out by water treatment specialist and certified by accredited lab to verify the water quality parameters are met as per Table 5. Circulation water is free from suspended solid and debris.

Table 5: Water Quality		
	9.0-10.0	
uctivity (uS/cm)	Less than 20	

рН	9.0-10.0
Conductivity (µS/cm)	Less than 200
Total Iron (ppm)	Less than 5
Turbidity (NTU)	Less than 20
CaCo ₃ (ppm)	Less than 100
Nitrite as NaNO ₂ (ppm)	Less than 1200

Suitable water treatment chemicals for condenser water shall be maintained in the pipeline after pipe flushing has been concluded.

Pipe flushing test reports shall be submitted to S.O after completion of flushing procedures. As a minimum, the test records shall contain detail of testing and the results.

1.2.3.4 Duct Leak Test and Duct Flushing

All high pressure ductwork more than 750Pa static pressure shall be subjected to duct leak test procedure and acceptance criteria in accordance with HVAC Air Duct Leakage Test Manual (ANSI/SMACNA 016-2012). All duct opening shall be sealed prior to duct leak test. Maximum system leakage shall be limited to 5% of design flow. The test result shall be approved by the S.O.

All duct systems shall be flushed according to the requirement of this specification. All fabrication, jointing works and leak test shall be completed and accepted before the flushing procedure. Duct flushing reports shall be submitted to S.O after completion of flushing procedures.

1.2.3.5 LV Motors, Switch Gears and Cabling Insulation Test

Insulation resistance test shall be performed via a megohmmeter with a voltage output of at least 500-1000 dc volts. Each conductor shall be individually test with all other conductors and shields grounded. Test duration shall be one minute and the resistance value shall be recorded.

Step 1- Conducting Time - Resistance Absorption Test Method

The successive resistance reading shall be taken at specific times and the differences in readings shall be recorded. A good insulation shows a continual increase in resistance over a period of time (in the order of 30 to 60 second).

Step 2 - Dielectric Absorption Ratio

The test shall be continuing with Dielectric Absorption Ratio reading by taking resistance value at every minute until 10 minutes to obtain the Polarization Index.

The Polarization Index is the ratio of two time-resistance readings (such as a 10-minute reading divided by a 1-minute reading)

The minimum acceptance value of Polarization Index shall be 1.4 to 1.6 for 60/30 sec Ratio and 2 to 4 for 10/1 minutes ratio.

1.2.3.6 Cable Continuity Test

Cable continuity test shall be performed on each power cable by ohmmeter method. Perform an acceptance test on cables, including terminations and joints, after cable system installation and before the cable system is placed into service. In accordance with ANSI/IEEE 400, by means of direct voltage (dc) and recorded in the relevant testing form.

1.2.3.7 Pipe Gradient Test

All drain pipes carrying condensate shall be tested to verify their ability to discharge condenser to the drain point seamlessly without any obstruction or water stagnation.

1.2.4 Functional Performance Test

List of functional performance test are as the following. All Functional Performance Test shall commence after all inspection and testing during installation stage has been completed.

1.2.4.1 <u>Pre-Functional Performance Test</u>

a. <u>Air Balancing</u>

Air flow measurement in ducts shall be measured by either pitot tube traverse average method or vane anemometer (depending on site conditions). Balancing damper final position shall be marked on site. Final terminal air flowrate shall be balanced to within $\pm 10\%$ from design value or as per S.O satisfaction.

Air flow rate to each terminal shall be measured by air flowhood with digital manometer and balanced via balancing damper. Total air balancing report shall be produced and submitted to S.O.

b. <u>Water Balancing</u>

Water balancing shall be carried out to balance the water flow distribution in condenser water circuit as per design water flow. Volumetric water flow rate shall be measured by flow meter or balancing valve pressure drop-flow relationship. Total water balancing report shall be produced and submitted to S.O. Final terminal flowrate shall be balanced to within $\pm 10\%$ from design value or as per S.O satisfaction.

For constant flow pump system, pressure-flow curve (pump curve) shall be provided via plotting minimum of 3 tested points of pressure and flow.

c. <u>Accuracy Test</u>

Before the commencement of the functional performance test, the contractor shall carry out field calibration check for the functional accuracy of measuring, regulating and similar equipment, forming part of installation including gauges, tranducers, sensors, switches and meters.

All calibration certificates of all measuring facility shall be submitted to the S.O.

1.2.4.2 Water Cooled Package (WCP) Test

List of inspection and test name for WCP are listed in Table 6. Detail method statement for testing shall be submitted conforming to the test requirements in this specification.

Table 6: WCP Inspection and Test

Inspection / Test name	Objective		
WCP General Inspection	Verify that equipment physical conditions are acceptable.		
WCP Power Supply Inspection	Verify that power supply is adequate and phase sequence check.		
Condenser Water Flow Test	Verify that condenser water flow is as per design.		
WCP Interlocking Test	Verify interlocking and operation sequence between WCPU, condenser water pump, cooling tower and valves.		
WCPU Low Flow Protection Test	Verify WCPU protection against low flow condition.		
WCPU Refrigerant High/Low Pressure Protection Test	Verify WCPU protection against refrigerant high/low pressure condition		
Cooling Coil Performance and COP Test	Verify that coil capacity is as per design.		
Fan Volumetric Air Flow Test	Verify that air flow is as per design flow.		
WCP Load Test	a) Verify WCP performance as per published performance data.b) Verify WCP ability to perform at peak and minimum anticipated load within allowable WCP operating parameters.		
WCP Control Test	Verify that control system function as per design control strategies.		
Cooling Tower Performance Test	Verify cooling tower performance as per published performance data.		
Noise Level Test	Verify noise level within permissible limit.		

a. WCP General Inspection

WCPU shall be visually inspected for any deviation from approved shop drawings, approved material and identification of any physical defects that may arise during installation works.

b. <u>WCP Power Supply Inspection</u>

The voltage, ampere, phase sequence, overcurrent tripping setting shall be check and verify prior to WCP initial test run. In no condition should the voltage dropped in access 10% the WCP shall run. Never operate the motor where the phase imbalanced greater than 2% or manufacturer recommendation.

All equipment such as WCPU, pumps, fans shall be rotational check against manufacturer recommendation. Compressor unit shall be adequately heated prior running. Interlocking function between pumps, flow switches, pressure switches, actuators and compressors shall be check and verified. For detail requirement refer Table 10.

c. <u>Condenser Water Flow Test</u>

The test must be carried out with WCPU in off mode by either flow measurement with installed flowmeter or with portable ultrasonic flowmeter/velocity meter. Differential pressure head upstream and downstream of the pump and WCPU's condenser shall be recorded. The flowmeter reading and differential head is then crosschecked with pump curve and condenser pressure flow curve.

Flowrate and differential pressure head must be on the published pump curve from the manufacturer. All pumps shall be checked for formation of cavitation and verifying that the Net Positive Suction Head Available (NPSHa) is greater than Net Positive Suction Head Required (NPSHr).

d. WCP Interlocking Test

WCP interlocking test shall be carried out in two (2) modes namely starting and stopping sequence for each individual WCPU.

WCP starting and stopping sequences and time delay including condenser water pump, cooling tower, and motorised valve shall response according to design requirement or manufacturer's recommendation.

e. WCPU Low Flow Protection Test

WCPU ability to safety cut off in the event of low flow condition shall be demonstrated by simulating built in or field installed flowswitch/differential pressure switch activation.

WCPU shall be cut off once flowswitch is activated. Flowswitch shall be activated once WCPU flow drops below minimum allowable flow.

f. WCPU Refrigerant High/Low Pressure Protection Test

WCPU ability to cut off in the event of excessively high refrigerant pressure and low refrigerant pressure. The test shall be carry out by manipulating high/low pressure switch setting and observe tripping of compressors.

g. <u>Cooling Coil Performance and COP Test</u>

Air temperature and humidity before and after cooling coil (off/on coil) shall be spot measured and recorded at anticipated peak and lowest ambient.

Coil performance data and COP test data shall then be analysed and endorsed by manufacturer. Coil performance shall be compared with manufacturer published performance data. Parameters that are beyond recommended operating range shall be identified and rectified.

h. Fan Volumetric Air Flow test

Air flow measurement in ducts shall be measured by either pitot tube traverse average method or vane anemometer (depending on site conditions). Fresh air flow rate shall be measured via vane anemometer or pitot static tube (single point). All points for pitot tube insertion shall be prepared and reseal adequately after measurement. Blower motor power shall be recorded during measurement.

i. WCP Load Test

WCP load test shall be carried out by continuing to operate the WCP for 3 consecutive days at design operating hours with active sequencing control. Actual field performance data shall be compared with published WCP performance data from the manufacturer. Published WCP performance data shall tabulate the relationship between the input variables and the output variables of WCP as per Table 7.

Variables	Parameters
Input	Entering condenser water temperature, water flow, air entering evaporator flowrate, temperature and humidity.
Output	Total load, total sensible, air leaving dry bulb and wet bulb, compressor power input, COP.

Table 7: WCP Performance Variables

All WCP operating variables shall be either logged or one off measured at 10 minutes interval which include data as per Table 8.

Full load capacity of WCP may not be achieved due to non-availability of cooling load of the actual building. Recorded WCP load shall be corrected to include effect of human, lighting and weather related load at design conditions in order to demonstrate WCP ability to serve peak cooling load as per design.

All WCPU, pump and cooling tower and switchboard operating parameters shall then be analysed by manufacturer and parameters that are beyond WCP recommended operating range shall be identified and rectified.

No	Data	Type of measurements
1	Electrical power input of WCPU, pump and cooling tower	Logged data for WCPU. One-off measurement is allowed for constant load motors.
2	Condenser water flow	Logged data for variable flow system. One-off measurement is allowed for constant flow system.
3	Entering condenser water temperature (CEFT)	Logged data from data logger
4	Leaving condenser water temperature (CLFT)	
5	Outdoor air dry/wet bulb temperature	
6	Air off coil temperature and humidity	Logged data from data logger
7	Air on coil temperature and humidity	
8	Volumetric air flow	(refer Volumetric air flow test)
9	Hot water temperature (entering cooling tower)	
10	Cold water temperature (leaving cooling tower)	Logged data from data logger
11	Cooling tower air intake wet bulb temperature	

Table 8: WCP Operating Variables

j. WCPU Control Test

Each WCPU control system shall be tested against their design intent as detail out in Table 9.

Type of WCPU Control	Description
Temperature Control	Adjust thermostat setting above and below controlled parameter value (e.g. return air or space air temperature) and observe response in compressor on/off.
Damper Shut Off	For motorised fresh air damper application, ensure damper is closed when WCPU is shut off.
Fire Mode Test	Test interlocking between smoke detector and WCPU trip (control panel). Aerosol spray shall be used to activate smoke detectors and observe tripping of WCPU.

Table 9: WCPU Control Test Requirements

i. Cooling Tower Performance Test.

Cooling tower performance test shall be carried out in accordance with Cooling Tower Institute (CTI) Acceptance Test or any other relevant code approved by S.O. All data shall be recorded during chiller plant load test. Make up water tank ability to make-up cooling tower water loss shall be verified.

j. Noise Level Test

Noise level measurement shall be carried out via Sound Level Meter Type 2 / Class 2 General Purpose Grade for field use \pm 1.0 dB. All measurement points are at a height of 1.5m from the floor at every enclosed space/zone. Measurement shall be made when ACPU is on and another one when in off condition (background noise level).

1.2.4.3 Switchboard and Power Supply

List of Switchboard and power supply inspection and test name are listed in Table 10. Detail method statement for testing shall be submitted conforming to the test requirements in this specification. Only Competent Person as in Electricity Regulations 1994 shall conduct the switchboard testing.

Table 10: Switchboard and Power Supply Inspection and Test Requirements

Inspection / Test name	Description
Switchboard General Inspection	 Verify physical switchboard components are as per specification. Check for tripping setting and system trip. Check for wiring, motor insulation and record data. Check for cable terminal tightness. Check for equipment and panel grounding connection. Check for any sign for cable heating. Cable temperature shall be measured and verify against IEEE standards for temperature rise during full load. Check for control circuit function as intended. Check for contractors, relays, ACB, MCCB, MCB, type, size and ratings as per specification.
Power Supply Test	 Verify that power supply parameters are within permissible range, safety protections are in place and physical condition of switch board and cabling works are acceptable as per specification and approved shop drawings. Verify rotation of equipment/phase sequencing according to manufacturer recommendation. Verify phase protection relay installation and function.
Overcurrent and Earth Fault Protection	 Circuit breaker and Earth Fault Protection calibration and discrimination shall be conducted and coordinated between electrical contactors. Circuit breaker and Earth Fault Protection shall be tested against simulated leakage current. IDMT tripping delay shall be selected/programmed suitable for equipment starting overloading preventing nuisance tripping during starting.

1.2.4.4 Air Distribution

List of Air Distribution system inspection and test name are listed in Table 11.

Inspection / Test name	Objective	
Room Condition	Verify temperature, humidity and air velocity is within specification.	
Pressurisation Test	Verify operating space differential pressure is within specification.	
Duct Condensation Inspection	Verify insulation performance to prevent duct condensation.	

Table 11: Air Distribution System Inspection and Test Name

a. <u>Room Condition</u>

Space temperature and relative humidity shall be recorded either by temperature and humidity data logger or spot measurements using sling psychrometer as per S.O instruction. Time of measurement shall coincide with WCPU test period.

Temperature and humidity data logger shall be used to measure temperature and humidity at these locations;

- Location where occupants are known to spend most of their time.
- Furthest zone and high heat load area.
- Main return duct
- Critical areas such as OT room, ICU/CCU/NICU room, Medical Record, High Dependency Ward (HDW), Isolation Room, Central Sterile Supply Department (CSSD), Laboratory, Medical store, Server room as decided by S.O.

For all other areas, spot measurements using sling psychrometer shall be used during anticipated peak and minimum cooling load period as per S.O instructions. Air velocity in spaces shall be measured using hot wire anemometer.

Building operation and weather conditions during testing such as outdoor air temperature and humidity, internal load factors i.e. population, lighting and equipment data shall be recorded.

Indoor air condition test report shall be submitted consisting of the descriptive statistic of the measured data i.e. mean, max, min, range, frequency bin analysis, their respective location and building operation and weather conditions data during testing.

b. <u>Pressurisation Test</u>

In zone where differential pressure requirements are specified, pressurisation test shall be performed via pressure differential meter and verified by smoke test.

c. <u>Duct Condensation Check</u>

Visual check shall be carried out to determine any traces of condensation on duct surfaces during chiller load test. Any traces of condensation shall be reported.

1.2.4.5 Infiltration Test

Any appreciable path for infiltration of outside air or untreated air to the air conditioned space shall be identified visually and reported.

1.2.4.6 Wall Insulation and Sprayed PU Foam Insulation Effectiveness Test

Visual check on trace of condensation at all wall or slab surfaces shall be carried out and reported.

1.2.4.7 <u>Mechanical Ventilation Test</u>

List of mechanical ventilation system inspection and test name are listed in Table 12.

Table 12: Mechanical Ventilation System Inspection and Test Name

Inspection / Test name	Objective
Fan General Inspection	Verify that equipment physical conditions are acceptable.
Fan Volumetric Air Flow Test	Verify that air flow is as per design flow.
Fan Control Test	Verify that control system function as per design control strategies.
Noise Level Test	Verify noise level within permissible limit.

a. Fan General Inspection

Fan shall be visually inspected for any deviation from approved shop drawings, approved material and identification of any physical defects that may arise during installation works.

b. Fan Volumetric Air Flow Test

Air flow measurement in ducts shall be measured by either pitot tube traverse average method or vane anemometer (depending on site conditions). All points for pitot tube insertion shall be prepared and reseal adequately after measurement. For ductless fan, vane anemometer shall be used. Blower motor power shall be recorded during measurement.

c. <u>Fan Control Test</u>

Fan control test shall be carried out as per Table 13.

Table 13: Fan Control Test List

Type of Fan Control	Method
Temperature Control	Adjust thermostat setting above and below controlled parameter value and observe response in fan operation. Temperature reading of the served space shall be recorded via temperature data logger for 24 hrs fan operation.
Schedule Operation	Adjust timer schedule and observe response in fan operation.
CO ₂ Control	Adjust CO_2 sensor set point above and below controlled design value and observe response in fan operation. CO_2 reading of the served space shall be recorded via CO_2 meter (one off measurement).

d. Noise Level Test

Noise level measurement shall be carried out via Sound Level Meter Type 2 / Class 2 General Purpose Grade for field use \pm 1.0 dB. All measurement points are at a height of 1.5m from the floor at every enclosed space/zone. Measurement shall be made when fan is on and another one when in off condition (background noise level).

1.3 COMMISSIONING

Commissioning includes achieving, verifying, and documenting that the performance of facilities, systems, and assemblies meets defined objectives and criteria.

All completed test forms and test summary shall be submitted to S.O's representative for final review and approval. Having satisfied that all appropriate tests have been conducted and the performance of the installation meet the design objectives; S.O's representative will issue or recommends to the S.O for the issuance of Certificate of Practical Completion (CPC).

1.3.1 Handing Over Documents

After issuance of Certificate of Practical Completion, contractor shall submit all related project handing over documents as the following:

a) Test Report complete with fully verified Inspection checklist and Test Forms.

- b) Air Balancing Report
- c) Defects List
- d) Operation and Maintenance Manual which includes
 - · Manual/Standard Operating Procedures
 - Preventive Maintenance Schedule and Manual
 - Equipment/Product Engineering Data.
 - · Operation set point (temperature, relative humidity, pressure etc.)
 - Switchboard overload setting and set points
 - · Control valve setting
 - · Contractor and manufacturer contact details
 - · Circuit Diagrams
 - · Inventory List
- e) As-Built drawings
- f) Schedule of System Familiarisation Program to end users.

1.3.2 System Familiarisation Program

In-class and practical System Familiarisation Program shall be conducted to the personnel nominated by the S.O within one (1) month of issuance of Certificate of Practical Completion. The program shall focus on:

- Overview of design concept and objectives
- Operation instruction & competency requirement
- Maintenance procedures
- Critical operating parameters monitoring and
- Emergency response & safety procedures.
- Environmental protection procedures.

Contractor shall submit program modules and materials to the S.O for approval prior to commencement of training. Particulars of trainee shall be recorded and send to the S.O for records.

2.0 POST OCCUPANCY EVALUATION

Post Occupancy Evaluation shall be performed by the contractor one (1) month before the end of defect liability period.

Space temperature and relative humidity shall be measured at all respective temperature zone. Temperature, relative humidity and air speed shall be within specification. Any adjustment to the system are required if the data deviate from the specification.

A survey shall be carried out to evaluate user experiences with the air conditioning and ventilation system from comfort, operation ability or any other related problems. Survey form as in Table 14 shall be used. All survey form shall be submitted to the S.O for references.

Block			
Floor			
Space			
ACPU no			
Indoor Air Conditions			
Parameters	Measured value		Comment
Dry Bulb Temperature		°C	
Relative Humidity		%	
User Survey			
1) Any difficulty in operating the system	n? If Yes, please state	the d	etails.
2) Any specific problem system? If Yes, please state the details.			

Table 14: Post Occupancy Evaluation Form

3.0 TESTING INSTRUMENTS & ACCESSORIES

All permanent sensors and gauges use for measurement of temperature, pressure and flow shall be factory calibrated and all calibration certificates shall be submitted to the S.O prior to testing works.

The contractor shall provide all necessary testing, calibrating instruments and labour required for the testing, adjusting, balancing and commissioning of the air-conditioning and mechanical ventilation system installed under the contract.

The contractor shall also allow for any necessary replacement of parts in order to achieve the conditions specified in the drawings and specification. Provisional sum for that purpose is provided in Schedule of Price.

Testing instruments specification shall be as but not limited to Table 15.

Measurement	Туре	Accuracy
Dry bulb and humidity (logging)	Temperature and Relative Humidity data logger	Temperature measurement accuracy: ± 0.5 °C (0°C <t<30°c) 1.5%="" and="" of<br="">reading at 30°C<t<70°c). Humidity measurement accuracy: $\pm 2\%$RH (from 15°C to 25°C, from 5 to 95%RH)</t<70°c). </t<30°c)>
Dry bulb and humidity (One off)	Sling Psychrometer	± 0.5°C
Duct air velocity	Pitot Tube and digital manometer	± 0.7 m/s (from 2 to 5 m/s)
Free air velocity	Vane anemometer	± 3% of reading ± 0.1 m/s (from 0.3 to 3 m/s)
Room air velocity	Hot wire anemometer	<i>±</i> 3% of reading <i>±</i> 0.05 m/s (from 0.15 to 3 m/s)
Duct thickness	Vernier caliper	± 0.01 mm
Ampere	Clampmeter (instantaneous)	2.0% ± 5 digits (45-65Hz)
	Power/Energy logger (continuos)	± (1% of reading + 0.02% of full scale)
Voltage	Clampmeter (instantaneous)	1.5% ± 5 digits
	Power/Energy logger (continuos)	\pm (0.2% of reading + 0.01% of full scale)
Combined power, ampere, voltage, power factor and Energy	Power/Energy logger (continuos)	Active Power: ±(1.2% of reading + 0.005% of range) (For PF≥0.99); ±(1.2% of reading + 7 x (1-PF) + 0.005% of range) (from 0.6 PF to 0.98PF)
Air volumetric flowrate	Air flowhood with digital manometer	Supply and Exhaust : ±3% of reading
Noise (Full spectrum)	Sound Level Meter Class 1	Class 1 as per IEC 61672-1:2002
Noise (Average)	Sound Level Meter Class 2	Class 1 as per IEC 61672-1:2002
Vibration	Vibration Analyser	<i>±</i> 5% of reading (from 0.01 g to 50 g); where "g" in meter per second square.
Surface temperature	Infrared thermometer	Display accuracy ±1.0°C
Water volumetric flowrate	Ultrasonic flowmeter	Not more than 5% of reading typical

Table 15: Test Instruments