

INTAGIBLES BENEFITS

GREEN INNIATIVES- USING SOLAR ENERGY

REDUCED GREENHOUSE GAS (GHG) EMISSION

WHY SOLAR ENERGY?

- Abundance of sunlight 89,000 terawatts from the sun VS 15 terawatts needed entire world.
- Pollution free
- Can be used from anywhere Installed on building/remote areas
- Depleting Renewable energy
 - Cruel Oil reserve : 19years
 - Natural Gas reserve: 33years
- Viable to harness via Evacuated tube solar collector technologies
 - 92% of efficiency
 - High temperature of hot water
 - Zero maintenance
 - Long operation lifespan

THE MOST CRUCIAL REASON FOR USING SOLAR

IS....

THE SURVIVAL OF MANKIND WE HAVE TO GO FOR GREEN AND SUSTAINABLE TECHNOLOGY

Replacing an electric chiller with a non-electric one equals planting 33,000 trees.

Why Solar Air Conditioning?

	Solar Chiller	R134A Electric Chiller
Power source	•Steam, Natural gas, diesel, hot water and waste heat	•Huge capacity of electricity
	Cooling cap. 350RTPower consumption: 5.5 kW	Cooling cap. 350RTPower consumption: 227.5 kW
Working media	Refrigerant: waterAbsorbent: e.g Lithium BromideHarmless to environment	Refrigerant: CholoroflorocarbonCFC(R22,R123,R134A)Ozone depletion, global warming
Working principle	 Using absorber to maintain vacuum condition at evaporator 	•Using compressor to transfer the refrigerant from evaporator and maintain lower sat. pressure
Maintenance	Less moving partLess noise and vibrationEasier for maintenance	High speed rotationHigh pitch sound and vibrationMore wear & tear

Examples of Solar aB/aD sorption Chiller

Refrigerant cycle	Closed refrigerant cycle		Refrigerant (water) is in contact with the atmosphere	
Principle	Chilled water		Dehumidification of air and evaporative cooling	
Phase of sorbent	solid	liquid	solid	liquid
Typical material pairs	water - silica gel	water - lithium bromide ammonia - water	water - silica gel, water - lithium chloride	water - calcium chloride, water - lithium chloride
Market available technology	Adsorption chiller	Absorption chiller	Desiccant cooling	Close to market introduction
Typical cooling capacity (kW cold)	50 – 430 kW	15 kW – 5 MW	20 kW – 350 kW (per module)	
Typical COP	0.5 - 0.7	0.6 - 0.75 (single effect)	0.5 - >1	> 1
Driving temperature	60 – 90 °C	80 – 110 °C	45 – 95 °C	45 – 70 °C
Solar collectors	Vacuum tubes, flat plate collectors	Vacuum tubes	Flat plate collectors, solar air collectors	Flat plate collectors, solar air collectors

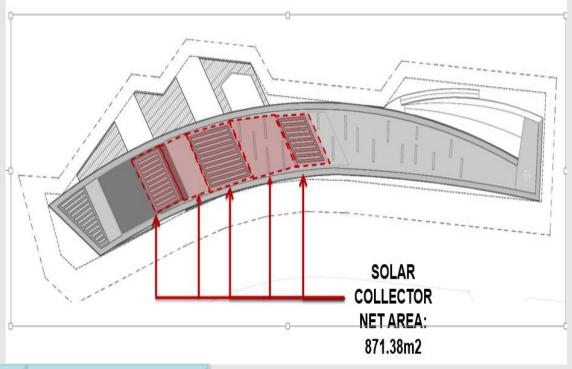
Solar Air-Conditioning Projects In Malaysia

Ikhasas office building, Puchong Winner of ASEAN Energy Award 2009:

1st Centralized Solar Cooling System in Malaysia

*Evacuated Tube Solar Collectors

*Absorption Chiller



*Cooling Tower

PKNS HQ SHAH ALAM

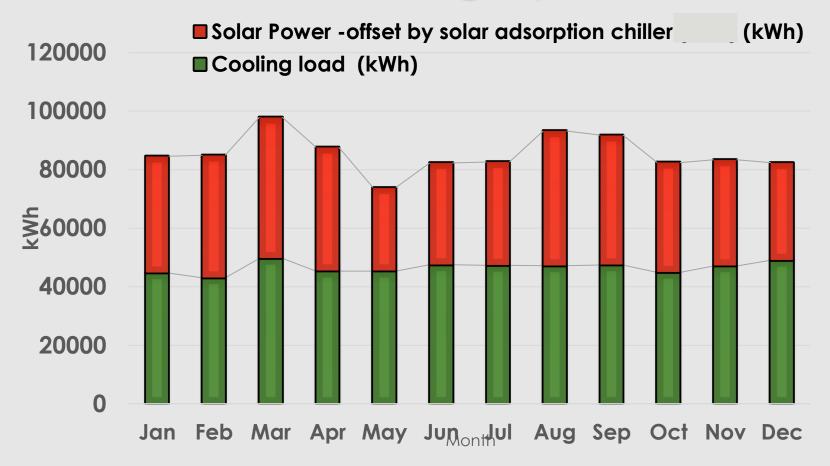
DESCRIPTION	NOS	CAPACITY	REMARKS
ELECTRIC CHILLERS	3 NOS (2 DUTY & 1 STANDBY)	400RT	-
ABSORPTION CHILLER	1 NO	75RT	~ 9.4% OF TOTAL

Shaftsbury Square, Cyberjaya

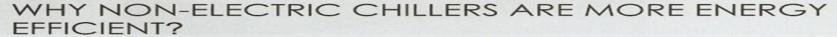
Project Shaftsbury Square, Cyberjaya

Day Views of Evacuated Tube collectors at Shaftsbury Square

Night Views of Evacuated Tube collectors at Shaftsbury Square


Shaftsbury Square uses Solar Thermal (Hot Water) System for 2 Blocks of Service Apartment.

http://sdc.my/upload/20151105_210636_P ROJECT_2Shaftsbury%20Square.pdf



Solar Air Conditioning System Simulation

Reduce by nearly 50% cooling load from the conventional electrical chiller in the building.

- **Solar Air- conditioning Technology**
- ✓ State of Art Building with evacuated solar tubes roof.
- \checkmark Design cooling load can be reduced by more than 50%.
- ✓ Environmentally friendly
- ✓ Sustainable Technology

The second law of thermodynamics has taught us that there is some loss in every energy conversion (converted to low quality energy that cannot be further used).

The overall energy efficiency is about 83% after 5 conversions (7-9 conversions if 2-4 times of voltage transformation to be applied).

energy

chillers

Non-electric The overall energy efficiency is about 153% with only one energy conversion.

(the energy efficiency is even higher if waste heat is used)

Note: The above-mentioned calculation on savings is based upon a 3,500kW (1,000Rt) chiller with 3,000 annual operating hours. A tree adsorbs 18.3kg CO₂ emissions yearly.