

Asian Institute of Technology Bangkek Thailand

No. GT - 87 - 13

LABORATORY AND FIELD TESTING OF LIME COLUMN TECHNIQUE IN BANGKOK SOFT CLAY

7 624.131-37 HAR

Haron Bin Forshim

LABORATORY AND FIELD TESTING OF LIME COLUMN TECHNIQUE IN BANGKOK SOFT CLAY

by

HARON BIN IBRAHIM

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering

Examination Commitee:

Prof. A.S. Balasubramaniam (Chairman) Dr. P. Noppadol Dr. Jiro Kuwano

Haron Ibrahim

Nationality	:	Malaysian
Previous Degree	:	B. Sc. (civil)
		U. M. I. S. T. Manchester,
		England.
Scholarship Donor	:	ASEAN - US

Asian Institute of Technology Bangkok, Thailand April, 1988 67 37 13

ABSTRACTS

This experimental study covers primarily construction technique involved in the installation of lime columns and the evaluation of the load capacity in the A.I.T campus. Fourteen lime columns with an average lime content of 5, 10 and 15% were installed in the field with high Calcium hydrated Lime (Ca(OH)₂) as its stabilizer. Eight lime columns were load tested, with diameters of 0.15 m and 0.30 The lengths of the lime columns were 4, 6 and 8 m with m. curing period of 4, 6 and 8 weeks before load test were performed. The ultimate load ranges from 1.2 to 2.4 ton, with the ultimate load of 2.4 ton obtained from the 0.3 m. 15%, 8 m length column, cured over 8 weeks. This represented an increase of 2.4 times over the ultimate load of the untreated soil. The effect of length, curing period. diameter and lime content were also investigated.

Field vane shear and Dutch cone penetration tests were also performed to monitor the effect of the installation procedure and its relative effectiveness with lime stabilization. Laboratory test conducted on laboratory prepared samples and also those obtained from the field indicated the effectiveness of lime treatment which resulted in an increase in strength and lower compressibility with lime treatment.

TABLE OF CONTENTS

Chapter	Tittle	Page
	Tittle Page	i
	Abstract	ii
	Acknowledgment	iii
	Table of Contents	iv
I	INTRODUCTION.	
	1.1 General	1
	1.2 Purpose and Scope of Study	1
II	LITERATURE REVIEW	
	2.1 Installation and Application of Lime Columns	2
	2.1.1 Introduction	2
	(1) Chemico-Lime Column Method	2
	(2) Deep Mixing Method	2
	(3) Lime Column Method	3
		333
	2.1.2 Application of Lime Column	3
	2.2 The Effects of Lime on Mixed Soils	
	- Column Material	5
	2.2.1 General	5
	2.2.2 Lime - Soil Reactions	5
	(1) Cation Exchange	5
	(2) Flocculation and Agglomeration	6
	(3) Lime Carbonation	6
	(4) Pozolanic Reaction	6
	2.2.3 Factors Affecting the Strength	
	of Lime Column Material	7
	(1) Lime Content	7
	(2) Types of Lime	7
	(3) Curing Condition	8
	(4) Natural Soil Properties	8
	(5) Density	9
	2.3 Effects of Lime Columns on Surrounding	9
	Untreated Soils	-
		9
	2.4 Bearing Capacity of Lime Columns	10
	2.5 Strength and Deformation Characteristics	
	of Lime Columns	11
	2.5.1 Ultimate Strength of Lime Columns	11
	2.5.2 Stress - Strain Characteristics	13
	2.5.3 Shear Strength Parameter	15
III		
	3.1 Introduction	16
	3.2 Location of Test Site	16
	3.3 General Physical Properties of Soft Clay	16

	3.4.1 Introduction	4.6
	3.4.2 Layout of Lime Columns	16
	3.4.3 Material for Lime Columns	16
	3.4.4 Equipment	17
	3.4.5 Installation Procedures	17
	3.4.6 Consumption of Lime Solution in	18
	the Column	18
	3.4.7 Quality Control	18
	3.4.8 Problems	19
	(1) Flow Meter	19
	(2) Interruption of work during	19
	installation	19
	(3) Plugging of the mixing blade	19
	(4) Pump	20
	(5) Wastage	20
	3.4.9 Loading Test	20
	(1) Loading Devices	20
	(2) Settlement Measurement	20
	3.4.10 Testing Procedure and Load	
	Increment	20
	3.4.11 Field Vane Shear Test	21
	3.4.12 Dutch Cone Penetration Test	22
3.5	Laboratory Test	
	3.5.1 Introduction	22
	3.5.2 Unconfined Compressive Strength	
	Test	22
	(1) Soil	22
	(2) Stabilizer	22
	(3) Water	22
	(4) Sample Preparation	23
	3.5.3 Triaxial Compression Test	23
	(1) Sample Preparation	23
	(2) Setting up of Specimen	23
	(3) Saturation of Sample	24
	(4) Consolidation of Specimen	24
	3.5.4 Consolidation Test	24
TEC		
	T RESULTS AND DISCUSSION Introduction	1.0
		25
4.2	Soil Profile and Soil Properties Field Tests	25
4. 0	4.3.1 Introduction	25
	4.3.2 Loading Test Results	25
	(1) Variation of Ultimate Bearing	26
	Capacity with Length	26
	(2) Variation of Ultimate Bearing	26
	Capacity with Diameter	26
	(3) Variation of Ultimate Bearing	20
	Capacity with Lime Content	26
	(4) Variation of Ultimate Bearing	20
	Capacity with Curing Period	27
	4.3.3 Field Vane Shear Test	27
	4.3.4 Dutch Cone Penetration Test	28
		20

IV

	4.4 Laboratory Tests	28
	4.4.1 Introduction	28
	4.4.2 Unconfined Compression Tests	28
	(1) Laboratory Samples	28
	(2) Field Samples	29
	4.4.3 Triaxial Compression Test	
		30
	(1) Effective Stress Paths	30
	(2) Normalized Effective Stress	
	Paths	31
	(3) Deviator Stress - Shear Strain	
	Relationship	32
	(4) Excess Pore Pressure - Shear	
	Strain Relationship	32
	(5) Pore Pressure Parameter A	32
	(6) Normalized Stress - Strain	
	Behaviour	32
	(7) Shear Strength Characteristics	33
	4.4.4 Oedometer Results	34
	4.5 Comparison between Ultimate Bearing	34
	Capacity From Loading Test vs Estimated	
	Bearing Capacity	35
	4.5.1 Introduction	35
	4.5.2 Estimated Bearing Capacity	35
	4.5.3 Shear Strength based on Unconfined	
	Compressive Strength Tests	36
	(1) Laboratory Prepared Samples	36
	(2) Field Samples	36
	4.5.4 Shear Strength based on Dutch Cone	
	Penetration Tests	37
	4.5.5 Shear Strength based on Triaxial	
	Compression Tests	37
	4.6 Comparisons Between the Lime Column	0,
	Technique and Granular Pile Installation	37
	sooning to and drangiat file installation	51
v	CONCLUSIONS AND RECOMMENDATIONS	
	5.1 Field Tests	20
	5.2 Laboratory Tests	39
		40
	5.2.1 Unconfined Compression Tests	40
	5.2.2 Triaxial Compression Tests (CIU)	40
	5.2.3 Oedometer Tests	41
	5.3 Predicted Ultimate Bearing Capacity	41
	5.4 Recomendations	41
W.T.	DEBENARS	
VI	REFERENCES	42
	TADIDC	
	TABLES	46
	FIGURES	-
	LIGORED.	58

I INTRODUCTION

1.1 General

For construction of highways and approach roads on soft compressible clays, the traditional technique to overcome such engineering difficulties was to extend the load to a suitable bearing strata by means of deep foundations. An alternative was to redesign the structure and its foundations for support by the poor soil. These approaches may not be either feasible or economical. Soil stabilization techniques which are basically an insitu method of increasing the soils bearing capacity and reduction in settlement are highly preferable in this instances.

The lime column technique has thus been developed to reduce the settlement of mainly light structures such as road embankments, runways, small dam embankments, oil storage tanks and other lightly loaded structures.

The lime column technique for soil stabilization is relatively new in its presently developed form and as so far, the data available about the applications of lime column methods and the design procedure used for calculating bearing capacity and settlements are based on laboratory and field observation at sites in Sweden and Finland only. BROMS & BOMAN (1977a) therefore cautions to first ascertain the applicability for potential suitable soils in the areas where experience with this method is not available.