AN INDEPENDENT DESIGN CHECK OF THE PIER AT VIADUCT ON FEDERAL ROUTE FT180/001/40 WEST PORT – NORTH PORT, SELANGOR DARUL EHSAN

August 31, 2011

FINAL REPORT

VOLUME II REPORT ON DESIGN REVIEW

Prepared by :

KUMPULAN IKRAM SDN BHD

Blok 5, Unipark Suria *(Formerly known as Taman Ilmu Ikram),* Jalan IKRAM-UNITEN, 43000 Kajang, Selangor Darul Ehsan

Tel: (603) 87383291, Fax: (603) 87365406

For :

JABATAN KERJA RAYA MALAYSIA

Bahagian Forensik, Cawangan Kejuruteraan Awam, Struktur dan Jambatan, Ibu Pejabat JKR Malaysia Tkt. 15, Centre North Point,The Boulevard, Mid Valley City,Lingkaran Syed Putra, 59200 Kuala Lumpur

Tel : (603) 92354256, Fax : (603) 22873514

Kumpulan IKRAM Sdn Bhd

Blok 7, Unipark Suria, (Formerly known as Taman Ilmu Ikram) Jalan IKRAM-UNITEN, 43000 Kajang, Selangor Darul Ehsan Tel: (603) 87383291, Fax: (603) 87365406

FINAL REPORT VOLUME II

TABLE OF CONTENTS

1.	INTR	RODUCTION	11
	1.1.	General	11
	1.2.	Scope Of This Document	12
2.	REFI	ERENCE DOCUMENTS, UNITS and ABBREVIATIONS	12
	2.1.	Design Codes and Standards	12
	2.2.	Design References	12
	2.3.	System of Units	12
	2.4.	Abbreviations	13
3.	INFC	RMATIONS SUPPLIED	14
	3.1.	Reports	14
	3.2.	As Built Drawings	14
4.	DES	IGN REVIEW METHODOLOGY	15
	4.1.	Approach	15
	4.2.	Loading	16
	4.3.	Material Strength	19
	4.4.	Load Combinations	20

	4.5.	Ultimate Limit State (ULS) - Sectional Capacity Check	20
	4.6.	Serviceability Limit State (SLS) - Crack Width Check	20
5.	DESC	CRIPTION OF STRUCTURES	21
	5.1.	Pier P-11A (Type P1-C)	21
	5.2.	Pier P-25 (Type P1-A)	22
	5.3.	Pier P-33 (Type P1-A)	25
6.	3D Al	NALYTICAL MODELS	26
	6.1.	Description of Analytical Model	26
	6.2.	Pier P-11A (Type P1-C)	27
	6.3.	Pier P-25 (Type P1-A)	31
	6.4.	Pier P-33 (Type P1-A)	34
7.	DESI	GN REVIEW FOR PIER P-11A (TYPE P1-C)	38
	7.1.	Pier Column Check for Pier P-11A	
	7.2.	Crosshead Check for Pier P-11A	49
	7.3.	Strut and Tie Analysis (STM) for Pier P-11A Crosshead	74
	7.4.	Finite Element Analysis (FEM) for P-11A	80
	7.5.	Summary of Design Review for Pier P-11A	84
8.	DESI	GN REVIEW FOR PIER P-25 (TYPE P1-A)	88
	8.1.	Pier Column Check for Pier P-25	88
	8.2.	Crosshead Check for Pier P-25	93
	8.3.	Summary of Design Review for P-25	107
9.	DESI	GN REVIEW FOR PIER P-33 (TYPE P1-A)	109
	9.1.	Pier Column Check for Pier P-33	109
	9.2.	Crosshead Check for Pier P-33	113
	9.3.	Strut and Tie Analysis (STM) for Pier P-33 Crosshead	128
	9.4.	Finite Element Analysis (FEM) for P-33	135
	9.5.	Summary of Design Review for P-33	139
10.	CON	CLUSION	143
	10.1.	Pier Column Check	143
	10.2.	Crosshead Check	144
11.	APPE	ENDIX A – CRACK WIDTH VERIFICATION	149
12.	APPE	ENDIX B – PROPOSED REMEDIAL WORK	151
	12.1.	Pier Type P1-C (Inverted "L" Pier)	151

12.2.	Pier Type P1-A ("T" Pier))	155

Final Report

LIST OF TABLES

Table 1. List of Affected Piers11
Table 2. List of As Built Drawings 14
Table 3. The Affected Pier Information (8 Nos.) 15
Table 4. BD 37/88 (3 Notional Lanes) Vehicular Load Tabulation
Table 5. BD 37/88 (2 Notional Lanes) load distribution
Table 6. JKR MTAL (3 Notional Lanes) load distribution 19
Table 7. Summary of traffic live load analysis
Table 8. SLS and ULS load factors
Table 9. BS 5400-4:1990 "Table 1 – Design Crack Widths (cl. 4.1.1.1)
Table 10. Pier description and configuration21
Table 11. P-11A pier force – BD 37/88 (3 Notional Lanes)
Table 12. P-11A pier force load combination – BD 37/88 (3 Notional Lanes)
Table 13. P-11A pier force – BD 37/88 (2 Notional Lanes)
Table 14. P-11A pier force load combination – BD 37/88 (2 Notional Lanes)40
Table 15. P-11A pier force – JKR MTAL (3 Notional Lanes) 40
Table 16. P-11A pier force load combination – JKR MTAL (3 Notional Lanes)40
Table 17. P-11A pier force – BD 37/88 (Transverse wind load)41
Table 18. P-11A pier force load combination – BD 37/88 (Transverse wind load)41
Table 19. Summary of P-11A SLS crack width check45
Table 20. P-11A crosshead moment – BD 37/88 (3 Notional Lanes)
Table 21. P-11A crosshead moment load combination – BD 37/88 (3 Notional Lanes)
Table 22. P-11A crosshead shear @ 2.5m depth – BD 37/88 (3 Notional Lanes)50
Table 23. P-11A crosshead shear @ 2.5m depth load combination – BD 37/88 (3
Notional Lanes)
Table 24. P-11A crosshead moment – BD 37/88 (2 Notional Lanes) 51
Table 25. P-11A crosshead moment load combination – BD 37/88 (2 Notional Lanes)
Table 26. P-11A crosshead shear @ 2.5m depth – BD 37/88 (2 Notional Lanes)51

Table 27. P-11A crosshead shear @ 2.5m depth load combination – BD 37/88 (2	
Notional Lanes)	52
Table 28. P-11A crosshead moment – JKR MTAL (3 Notional Lanes)	52
Table 29. P-11A crosshead moment load combination – JKR MTAL (3 Notional	
Lanes)	52
Table 30. P-11A crosshead shear @ 2.5m depth – JKR MTAL (3 Notional Lanes).	53
Table 31. P-11A crosshead shear @ 2.5m depth load combination – JKR MTAL (3	6
Notional Lanes)	53
Table 32. Summary of P-11A crosshead ULS moment capacity check	54
Table 33. Summary of P-11A crosshead ULS shear force capacity check	61
Table 34. Summary of P-11A crosshead SLS crack width check	66
Table 35. P-11A – Summary of pier ULS moment capacity	84
Table 36. P-11A – Summary of pier SLS crack width	84
Table 37. P-11A – Summary of crosshead ULS moment capacity	84
Table 38. P-11A – Summary of crosshead ULS shear capacity	85
Table 39. P-11A – Summary of crosshead SLS crack width	85
Table 40. P-11A – Conventional beam theory vs. STM	86
Table 41. P-25 pier force – BD 37/88 (3 Notional Lanes)	88
Table 42. P-25 pier force load combination – BD 37/88 (3 Notional Lanes)	
Table 43. Summary of P-25 SLS crack width check	92
Table 44. P-25 crosshead moment – BD 37/88 (3 Notional Lanes)	93
Table 45. P-25 crosshead moment load combination - BD 37/88 (3 Notional Lanes	3)
	94
Table 46. P-25 crosshead shear @ 2.0m depth – BD 37/88 (3 Notional Lanes)	94
Table 47. P-25 crosshead shear @ 2.0m depth load combination – BD 37/88 (3	
Notional Lanes)	94
Table 48. P-25 crosshead shear @ 3.5m depth – BD 37/88 (3 Notional Lanes)	95
Table 49. P-25 crosshead shear @ 3.5m load combination - BD 37/88 (3 Notional	
Lanes)	95
Table 50. Summary of P-25 crosshead ULS moment capacity check	96
Table 51. Summary of P-25 ULS shear force capacity check @ 2.0m depth	99
Table 52. Summary of P-25 ULS shear force capacity check @ 3.5m depth	99
Table 53. Summary of P-25 SLS crack width check	04

Table 54. P-25 - Summary of pier ULS moment capacity107
Table 55. P-25 - Summary of pier SLS crack width
Table 56. P-25 – Summary of crosshead ULS moment capacity
Table 57. P-25 – Summary of crosshead ULS shear capacity @ 2.0m depth 107
Table 58. P-25 – Summary of crosshead ULS shear capacity @ 3.5m depth 108
Table 59. P-25 – Summary of crosshead SLS crack width
Table 60. P-33 pier force – BD 37/88 (3 Notional Lanes)109
Table 61. P-33 pier force load combination – BD 37/88 (3 Notional Lanes)110
Table 62. Summary of P-33 crack width check113
Table 63. P-33 crosshead moment – BD 37/88 (3 Notional Lanes)114
Table 64. P-33 crosshead moment load combination – BD 37/88 (3 Notional Lanes)
Table 65. P-33 crosshead shear @ 2.0m depth – BD 37/88 (3 Notional Lanes) 115
Table 66. P-33 crosshead shear @ 2.0m depth load combination – BD 37/88 (3
Notional Lanes)115
Table 67. P-33 crosshead shear @ 3.5m depth – BD 37/88 (3 Notional Lanes) 116
Table 68. P-33 crosshead shear @ 3.5m depth load combination – BD 37/88 (3
Notional Lanes)116
Table 69. Summary of P-33 crosshead ULS moment capacity check
Table 70. Summary of P-33 ULS shear capacity check @ 2.0m depth120
Table 71. Summary of P-33 ULS shear capacity check @ 3.5m depth 120
Table 72. Summary of P-33 crosshead SLS crack width check
Table 73. P-33 – Summary of pier ULS moment capacity
Table 74. P-33 Summary of pier SLS crack width
Table 75. P-33 Summary of crosshead ULS moment capacity
Table 76. P-33 – Summary of crosshead ULS shear capacity 140
Table 77. P-33 – Summary of crosshead SLS crack width
Table 78. P-33 Conventional beam theory vs. STM141
Table 79. Summary of traffic live load analysis
Table 80. Summary of pier ULS moment capacity143
Table 81. Summary of pier SLS moment capacity144
Table 82. Summary of crosshead ULS moment capacity 144
Table 83. Summary of crosshead ULS shear capacity

Table 84. Summar	y of crosshead SLS crack width check	146

Final Report

LIST OF FIGURES

Figure 1. Typical section of bridge deck	17
Figure 2. BD 37/88 (2 Notional Lanes) configuration	18
Figure 3. Pier P-11A (Type P1-C)	22
Figure 4. Pier P-11A (Type P1-C) precast beam	22
Figure 5. Pier P-25 (Type P1-A) – Left span	23
Figure 6. Pier P-25 (Type P1-A) – Right span	23
Figure 7. Pier P-25 (Type P1-A) precast beam section properties	24
Figure 8. Pier P-33 (Type P1-A)	25
Figure 9. Pier P-33 (Type P1-A) precast beam section properties	25
Figure 10. P-11A model	27
Figure 11. P-11A model – HA+KEL	27
Figure 12. P-11A model – Combined HB30 + HA	
Figure 13. P-11A model – HB45 Moving Load	
Figure 14. P-11A model – SV20 Moving Load	29
Figure 15. P-11A model – JKR MTAL	29
Figure 16. P-11A model – Transverse Wind Load	
Figure 17. P-11A model – STM Model	
Figure 18. P-11A model – FEM Model	31
Figure 19. P-25 model	31
Figure 20. P-25 model – HA+KEL	32
Figure 21. P-25 model – Combined HA + HB30	32
Figure 22. P-25 model – HB45 Moving Load	
Figure 23. P-25 model – SV20 Moving Load	
Figure 24. P-33 Model	
Figure 25. P-33 Model - HA+KEL	
Figure 26. P-33 Model – Combined HA + HB30	35
Figure 27. P-33 Model – HB45 Moving Load	35
Figure 28. P-33 Model – SV20 Moving Load	
Figure 29. P-33 Model – STM Model	

Figure 30. <i>P</i> -33	Model – FEM Model	37
Figure 31. P-11A	A As-built crosshead reinforcement	49
Figure 32. <i>P-11</i>	A STM Analysis Model	75
Figure 33. Pier F	P-11A Tension and Compression Zone based on ULS1C1	75
Figure 34. <i>P-114</i>	A STM Axial Force Diagram (Blue = Tension, Red = Compressi	ion)76
Figure 35. P-11A	A diagonal strut check	78
Figure 36. <i>P-11</i>	A S11 stress diagram	80
Figure 37. <i>P-11</i>	A S11 tension stress diagram	80
Figure 38. <i>P-11</i>	A S22 stress diagram	81
Figure 39. <i>P-11</i>	A S22 tension stress diagram	81
Figure 40. <i>P-11</i>	A SMAX stress diagram	82
Figure 41. P-11A	A SMAX tension stress diagram	82
Figure 42. P-11A	A SMIN tension stress diagram	83
Figure 43. P-11A	A as-built detailing	87
Figure 44. P-25	As-built crosshead reinforcement	93
Figure 45. P-33	As-built crosshead reinforcement	114
Figure 46. <i>P</i> -33	STM Analysis Model	130
Figure 47. <i>P</i> -33	tension and compression zone based on ULS1C1	130
Figure 48. <i>P-33</i>	STM axial force dDiagram (Blue = Tension, Red = Compressio	n)131
Figure 49. P-33	diagonal strut check	133
Figure 50. <i>P</i> -33	S11 stress diagram	135
Figure 51. P-33	S11 tension stress	135
Figure 52. P-33	S22 stress diagram	136
Figure 53. P-33	S22 tension stress diagram	136
Figure 54. P-33	SMAX stress diagram	137
Figure 55. P-33	SMAX tension stress diagram	137
Figure 56. P-33	SMIN stress diagram	138
Figure 57. P-33	as-built detailing	142
Figure 58. FRP S	Strengthening for Crosshead Type P1-C (Anchorage)	152
Figure 59. Optim	nal bond length, <i>l_e</i>	153
Figure 60. Carbo	on Fibre Wrap Type P1-C	154
Figure 61. FRP	Strengthening for Crosshead Type P1-A (Anchorage)	155
Figure 62. Optim	nal bond length, <i>l_e</i>	156

Figure 63. Carbon Fibre Wrap Type P1-A	157
Figure 64. FRP Strengthening for Crosshead Type P1-A (Shear)158

1. INTRODUCTION

1.1. General

Kumpulan IKRAM Sdn Bhd (hereinafter referred to as "IKRAM") was commissioned by Jabatan Kerja Raya (hereinafter referred to as "JKR") to provide an independent design review and rehabilitation proposal for eight (8) nos. of pier which were reported cracks by JKR at viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor.

PIER		PIER
ID	DES	Туре
P-10A	Inverted "L"	P1-C
P-11A	Inverted "L"	P1-C
P-12A	Inverted "L"	P1-C
P-13B	Inverted "L"	P1-C
P-14B	Inverted "L"	P1-C
P-15B	Inverted "L"	P1-C
P-25	"T"	P1-A
P-33	"Т"	P1-A

Table 1	List of Affected Piers
---------	------------------------

The scope of work includes the following:-

- To carry out independent design review on the affected pier and crosshead structures which were designed and built in 1999 in accordance with the design version of bridge design codes i.e. BS 5400 and BD 37/88;
- ii. To carry out detailed condition surveys, crack mappings and material testing on the affected piers;
- iii. To propose rehabilitation or strengthening work design for the affected piers and crosshead.

1.2. Scope Of This Document

This document presents the assumptions, methodology and results of the independent design review. The desk-top study is based on the as-built drawings, design basis and information made available at the time for this design review. Three (3) piers, namely P11a, P25 and P33 have been selected for this design review.

2. REFERENCE DOCUMENTS, UNITS and ABBREVIATIONS

2.1. Design Codes and Standards

BS 5400-4:1990 – Part 4: Code of Practice for design of concrete bridges

Departmental Standard BD 37/88 – Loads for Highway Bridges

2.2. Design References

- Ref #1: Strut-and-Tie Model for Deep Beam Design A practical exercise using Appendix A of the 2002 ACI Building Code, James K. Wight and Gustavo J. Parra-Montesinos
- *Ref #2:* Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. Appendix A Strut-and-Tie Models

2.3. System of Units

The following units are used in the report presentation;

- Length = m
- Tension / Compression Force = kN
- Tension / Compression Stress = N/mm²
- Bending Moment = kN.m
- Shear Force = kN
- Section Ultimate Capacity (Bending) = kN.m
- Section Ultimate Capacity (Axial) = kN
- Crack Width = mm
- Reinforcement Area = mm^2

Private & Confidential

2.4. Abbreviations

The following abbreviations are used in the report presentation;

- FEM Finite Element Model
- IKRAM Kumpulan Ikram Sdn Bhd
- JKR Jabatan Kerja Raya
- KEL Knife Edge Load
- LHS Left Hand Side
- MTAL Medium Term Assessment Loading
- RHS Right Hand Side
- STM Strut and Tie Model
- SLS Serviceability Limit State
- UDL Uniform Distributed Load
- ULS Ultimate Limit State

Final Report

3. INFORMATIONS SUPPLIED

The following reports and as-built drawings are made available for this study

3.1. Reports

RPT #1: "Laporan Pemeriksaan 8 Bilangan 'Pier' dan 'Crosshead' Jejambat FT180/001/40 di Laluan Pelabuhan Barat – Pelabuhan Utara, Daerah Klang, Selangor" by Bahagian Forensik (Struktur & Jambatan) Cawangan Kejuruteraan Awam, Struktur & Jambatan, Ibu Pejabat JKR Malaysia dated 22nd October 2010

3.2. As Built Drawings

Table 2. List of As Duit Drawings						
Item	Drawing Title	Drawing No.				
1	Typical Cross Section From CH360 to CH550	KPKR/J/R/129653/1/AM13				
2	Typical Cross Section From CH720 to CH850	KPKR/J/R/129653/1/AM15				
3	General Layout (1)	KPKR/J/R/129653/1/ST1A				
4	General Layout (2)	KPKR/J/R/129653/1/ST2A				
5	General Layout (3)	KPKR/J/R/129653/1/ST3A				
6	Piles Layout (1)	KPKR/J/R/129653/1/ST9				
7	Piles Layout (2)	KPKR/J/R/129653/1/ST10				
8	Pier Type P1-A – Concrete	KPKR/J/R/129653/1/ST17B				
9	Pier Type P1-C – Concrete	KPKR/J/R/129653/1/ST19A				
10	Pier Type P1-A – Reinforcement	KPKR/J/R/129653/1/ST23				
11	Pier Type P1-C – Reinforcement	KPKR/J/R/129653/1/ST25				
12	Precast Prestressed M-Beam	KPKR/J/R/129653/1/ST28A				
13	Deck Slab (1)	KPKR/J/R/129653/1/ST32B				
14	Deck Slab (2)	KPKR/J/R/129653/1/ST33B				
15	Deck Slab (3)	KPKR/J/R/129653/1/ST34B				
16	Elastomeric Bearing	KPKR/J/R/129653/1/ST12A				
17	Standard Expansion Joints	KPKR/J/R/129653/1/ST13A				

Table 2. List of As Built Drawings

4. DESIGN REVIEW METHODOLOGY

4.1. Approach

There are eight (8) piers which were reported cracks by JKR. The details of the affected structures are summarized as below:-

PIER		Pier Pier dia.		Cross- head	Piling	SPAN LENGTH / PRECAST BEAM TYPE		
ID	TYPE	Туре	(m)	Depth (m)	Fillig	LHS (m)	RHS (m)	
P- 10A	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	28.05m / 2 ⁿ -UM + 6 ⁿ -M	28.05m / 2 ⁿ -UM + 6 ⁿ -M	
P- 11A	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	28.05m / 2 ⁿ -UM + 6 ⁿ -M	28.05m / 2 ⁿ -UM + 6 ⁿ -M	
P- 12A	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	28.05m / 2 ⁿ -UM + 6 ⁿ -M	28.05m / 2 ⁿ -UM + 6 ⁿ -M	
P- 13B	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	28.17m / 2 ⁿ -UM + 6 ⁿ -M	21.85m / 2 ⁿ -UM + 6 ⁿ -M	
P- 14B	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	21.85m / 2 ⁿ -UM + 6 ⁿ -M	21.83m / 2 ⁿ -UM + 6 ⁿ -M	
P- 15B	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	21.83m / 2 ⁿ -UM + 6 ⁿ -M	21.78m / 2 ⁿ -UM + 6 ⁿ -M	
P-25	"T"	P1-A	3.0	3.5	6- Ø1200	35.05m / 12 ⁿ -U	28.05m / 2 ⁿ -UM + 14 ⁿ -M	
P-33	"T"	P1-A	3.0	3.5	6- Ø1200	28.05m / 2 ⁿ -UM + 14 ⁿ -M	28.05m / 2 ⁿ -UM + 14 ⁿ -M	

Table 3. The Affected Pier Information (8 Nos.)

After examining their span configuration and structural form, P-11A, P-25 and P-33 have been selected for this review study.

Based on the as built drawings and design basis / criteria made available for this study, 3D analytical models were built for P-11A, P-25 and P-33 to investigate the maximum induced forces acting on the affected piers and crossheads. The forces are checked against two (2) limit stage conditions; Serviceability Limit State (SLS) and Ultimate Limit State (ULS). The sectional axial and bending capacities are computed and checked against the maximum forces from the analysis under ULS condition. The crack widths are computed based on the maximum force from the analysis under SLS condition. Strut and Tie models (STM) and Finite Element Analysis (FEM) are performed to investigate the tension tie forces and localized tensile stresses distribution of the crossheads.

4.2. Loading

The following loads have been considered in this design review.

- Dead load
- Superimposed dead load
- Traffic live loads
- Wind load

4.2.1 Dead Load

Unit weight of precast post tensioned girder and in-situ deck slab is taken as 25.0kN/m³.

٠	Precast M10 girder	= 11.42kN/m
•	Precast UM10 girder	= 13.58kN/m
•	Precast "U" girder	= 18.66kN/m (for left span of P25 only)
•	160mm in-situ deck slab	= 3.84kN/m ²

4.2.2 Superimposed Dead Load (SDL)

Unit weight of secondary RC element is taken as 24.0kN/m³ and premix is taken as 22.6kN/m³.

- 50mm premix = 1.13kN/m²
- RC Parapet = 5.88kN/m (Edge)

= 11.75kN/m (Central)

Final Report

4.2.3 Traffic Live Load

Traffic live loads adopted for the study are as follows:-

- HA_{UDL} + KEL
- HA_{UDL} + 30 units HB (BD 37/88 cl. 6.3)
- 45 units HB (Unguided)
- JKR SV20 (Guided along centerline of carriageway)
- JKR Medium Term Axle Load (MTAL)

The traffic live loads used in accordance with BD 37/88 for 3 notional lanes are as follows:-

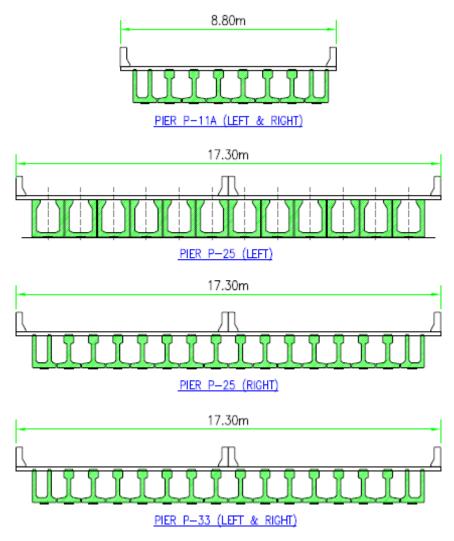


Figure 1. Typical section of bridge deck

Pier Type	Carriageway	Notional Lane	Loaded Length	ULD (p	er lane)	KEL (kN)
гын туре	Width (m)	Width (m)	(m)	kN/m	kN/m ²	
P1-C (P-11A)	8.00	2.667	28.0	36.04	13.52	120.0
P1-A (P-25 Left)	7.85	2.617	35.0	31.03	11.86	120.0
P1-A (P-25 Right)	7.85	2.617	28.0	36.04	13.77	120.0
P1-A (P-33)	7.85	2.617	28.0	36.04	13.77	120.0

Table 4. BD 37/88 (3 Notional Lanes) Vehicular Load Tabulation

In accordance with *cl.* 3.2.9.1 of BD 37/88, "In the absence of raised kerbs it is the width between safety fences, less the amount of set-back required for these fences, being not less than 0.6m or more than 1.0m from the traffic face of each fence". Based on this clause, a separate loading criterion is established for 2 notional lanes.

The traffic live load used in accordance with BD 37/88 for two (2) notional lanes is as follows:-

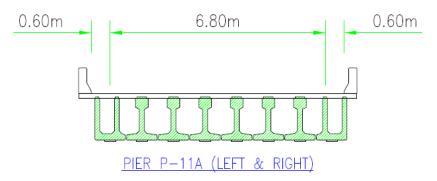


Figure 2. BD 37/88 (2 Notional Lanes) configuration

Table 5. BD 37/88 (2 Notional Lanes) load d

Pier Type	Carriageway	Notional Lane	Loaded Length	ULD (p	er lane)	KEL (kN)
	Width (m)	Width (m)	(m)	kN/m	kN/m ²	
P1-C (P-11A)	6.80	3.400	28.0	36.04	10.60	120.0

The traffic live load used in accordance with JKR MTAL for three (3) fixed 2.5m wide notional lanes is as follows:-

Pier Type	Carriageway	Notional Lane	Loaded Length	ULD (p	er lane)	KEL (kN)	
гы туре	Width (m)	Width (m)	(m)	kN/m	kN/m ²		
P1-C (P-11A)	8.00	2.500	28.0	27.00	10.80	100.0	

Table 6. JKR MTAL (3 Notional Lanes) load distribution

*Remaining 0.5m width loaded with 5.0 kN/m²

The following Table (7) summarized types of the traffic live load applied in this study.

Table 7. Summary of traffic live load analysis

	BD 3	7/88		JKR MTAL	
Pier Type	3 Notional 2 Notional Lanes Lanes		SV20	(3 Notional Lanes)	
P1-C (P- 11A)	\checkmark	\checkmark	\checkmark	\checkmark	
P1-A (P-25)	\checkmark		\checkmark		
P1-A (P-33)			\checkmark		

4.2.4 Wind Load

Transverse wind load is checked against Pier P-11A. The nominal transverse wind load is derived based on a maximum 3-sec wind gust speed of 32 m/s.

4.3. Material Strength

4.3.1 Concrete

Concrete grade adopted for the study are as follows;

- Precast post tensioned beams = C50
- Reinforced concrete crossheads & piers = C40

4.3.2 Reinforcement

Reinforcement bar adopted for the study is Type 2 deformed bar with minimum yield strength, $f_y = 460 \text{N/mm}^2$.

4.4. Load Combinations

The applied load factors γ_{fl} and γ_{f3} for SLS and ULS shall be as follows:-

		Combir		
No.	Load Case	γ	γ_{f3} ULS	
		SLS	ULS	
1	SW	1.00	1.15	1.10
2	Deck Slab	1.00	1.15	1.10
3	SDL (Parapet)	1.00	1.20	1.10
4	Premix	1.20	1.75	1.10
5	HA+KEL	1.20	1.50	1.10
6	HA+HB30	1.10	1.30	1.10
7	HB45	1.10	1.30	1.10
8	SV20	1.10	1.30	1.10
9	MTAL	1.20	1.50	1.10

Table 8. SLS and ULS load factors

4.5. Ultimate Limit State (ULS) - Sectional Capacity Check

The ultimate capacity for the affected piers and crossheads are computed based on the as-built drawings made available for this study. These capacities are checked against the maximum load effects acting on the pier in Ultimate Limit State (ULS) to assess the adequacy of the design.

4.6. Serviceability Limit State (SLS) - Crack Width Check

The crack width for the affected piers and crossheads are computed based on the as-built drawings made available for this study. The crack widths are checked using the maximum force derived from load case HA+KEL in Serviceability Limit State (SLS). The allowable crack width shall be less than 0.25mm in accordance with *BS 5400 cl. 4.1.1.1*.

Table 9.	BS 5400-4:1990	"Table 1 – Design Crack Widths	(cl. 4.1.1.1)
----------	----------------	--------------------------------	---------------

Severe		0.25
Concrete surfaces exposed to:		
driving rain	Wall and structure supports remote from the carriageway	
or		
alternate wetting and drying	Bridge deck soffits	
	Buried parts of structures	

5. DESCRIPTION OF STRUCTURES

Based on the as-built information made available for this study, the basic data of the affected piers and crossheads used for the analysis are summarized as follows;

PIER		Pier Pier Cross- dia. bead		Piling	SPAN LENGTH / TY	н			
ID	TYPE	Туре	(m)	Depth (m)	Filling	LHS (m)	RHS (m)	(m)	
P- 10A	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	28.05m / 2 ⁿ -UM + 6 ⁿ -M	28.05m / 2 ⁿ -UM + 6 ⁿ -M	10.4 51	EJ
P- 11A	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	28.05m / 2 ⁿ -UM + 6 ⁿ -M	28.05m / 2 ⁿ -UM + 6 ⁿ -M	10.4 72	
P- 12A	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	28.05m / 2 ⁿ -UM + 6 ⁿ -M	28.05m / 2 ⁿ -UM + 6 ⁿ -M	10.4 97	Fix ed
P- 13B	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	28.17m / 2 ⁿ -UM + 6 ⁿ -M	21.85m / 2 ⁿ -UM + 6 ⁿ -M	11.0 87	
P- 14B	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	21.85m / 2 ⁿ -UM + 6 ⁿ -M	21.83m / 2 ⁿ -UM + 6 ⁿ -M	11.0 87	EJ
P- 15B	Inverted "L"	P1-C	2.5	2.5	4- Ø1200	21.83m / 2 ⁿ -UM + 6 ⁿ -M	21.78m / 2 ⁿ -UM + 6 ⁿ -M	10.5 73	
P-25	"T"	P1-A	3.0	3.5	6- Ø1200	35.05m / 12 ⁿ -U	28.05m / 2 ⁿ -UM + 14 ⁿ -M	8.96 1	EJ
P-33	"T"	P1-A	3.0	3.5	6- Ø1200	28.05m / 2 ⁿ -UM + 14 ⁿ -M	28.05m / 2 ⁿ -UM + 14 ⁿ -M	8.96 1	EJ

Table 10. Pier description and configuration

The working capacity of the Ø1200mm bored pile is 6,000kN.

After examining the span configuration and structural form for the eight (8) cracked piers, P-11A, P-25 and P-33 have been selected for this review study.

5.1. Pier P-11A (Type P1-C)

P-11A is an inverted "L" shape pier supporting 28.05m long precast girders on the left and right. Each span consists of 6 nos. of precast M10 girder and 2 nos. of precast UM10 edge girder and supported by 4 nos. of 1200mm dia. bored pile. The working capacity of the 1200mm dia. bored pile is 6,000kN.

Final Report

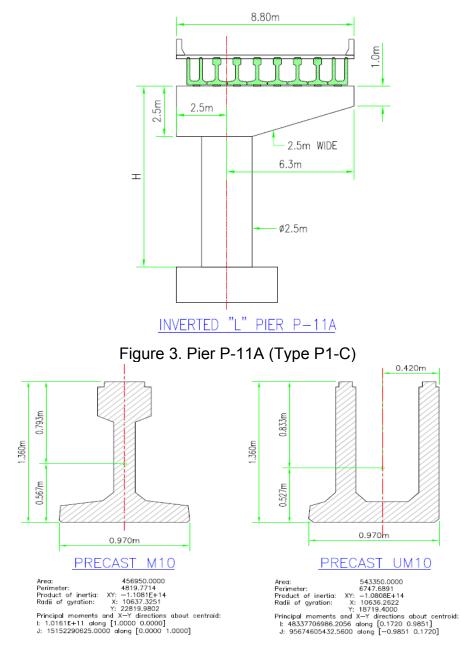


Figure 4. Pier P-11A (Type P1-C) precast beam

5.2. Pier P-25 (Type P1-A)

P-25 is a "T" shape pier supporting 35.05m span on the left and 28.05m span on the right. The left span consists of 12 nos. of precast U girder and the right span consists of 14 nos. of precast M10 girder and 2 nos. of precast UM10 edge girder and supported by 6 nos. of 1200mm dia. bored pile. The working capacity of the 1200mm dia. bored pile is 6,000kN.

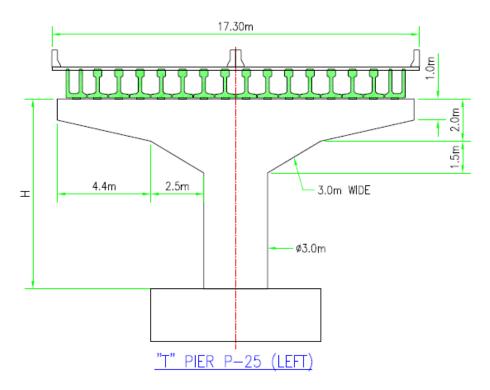


Figure 5. Pier P-25 (Type P1-A) – Left span

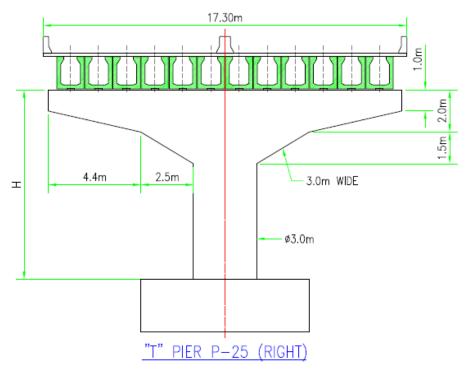
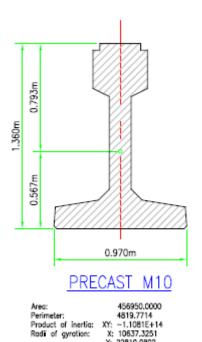
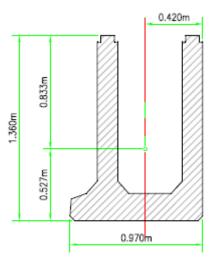
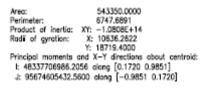
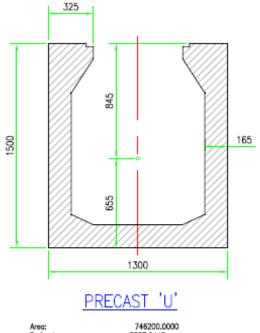



Figure 6. Pier P-25 (Type P1-A) – Right span


Product of inertia: XY: Radii of gyration: X:

Principal moments and X-Y directions


t 1.0161E+11 along [1.0000 0.0000] J: 15152290625.0000 along [0.0000 1.0000]


Y: 22819.9802

about centroid:

PRECAST UM10

Area: Perimeter: Product of inertia: XY: 8557.0448 -7.2867E+14 X: 43122.9434 Y: 22652.0151 Radii of gyration: Principal moments and X-Y directions (1: 1.9179E+11 along [1.0000 0.0000] J: 1.8904E+11 along [0.0000 1.0000] about centroid:

Figure 7. Pier P-25 (Type P1-A) precast beam section properties

5.3. Pier P-33 (Type P1-A)

P-33 is a "T" shape pier supporting 28.05m span on the left and right. Each span consists of 14 nos. of precast M10 beam and 2 nos. of precast UM10 beam and supported by 6 nos. of 1200mm dia. bored pile. The working capacity of the 1200mm dia. bored pile is 6,000kN.

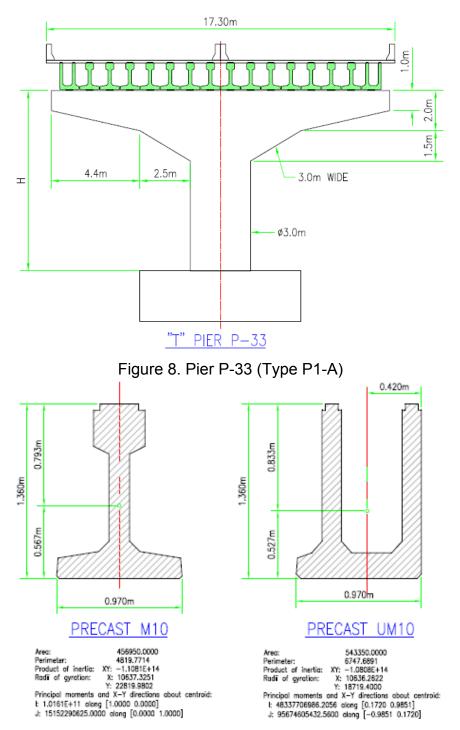


Figure 9. Pier P-33 (Type P1-A) precast beam section properties

6. 3D ANALYTICAL MODELS

6.1. Description of Analytical Model

 a) 3D analytical models are established using analysis software StaadPro 2007 to determine the maximum combined load effects on the affected piers and crossheads under the service load conditions.

Three (3) independent models are built for this study, i.e;

- P-11A (Type P1-C) Inverted "L" shape pier
- P-25 (Type P1-A) "T" shape pier
- P-33 (Type P1-A) "T" shape pier
- b) 2D STM's (Strut and Tie Model) are built to check the shear critical structure or the D-regions of deep hammer pier type concrete structure.

Two (2) independent STM models are built for this study, i.e;

- P-11A (Type P1-C) Inverted "L" shape pier
- P-33 (Type P1-A) "T" shape pier
- c) 2D FEM's (Finite Element Model) are performed to investigate the localized stresses on the piers and crossheads.

Two (2) independent FEM models are built for this study, i.e;

- P-11A (Type P1-C) Inverted "L" shape pier
- P-33 (Type P1-A) "T" shape pier

6.2. Pier P-11A (Type P1-C)

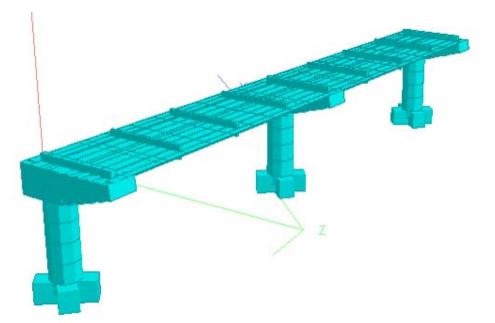


Figure 10. *P-11A model*

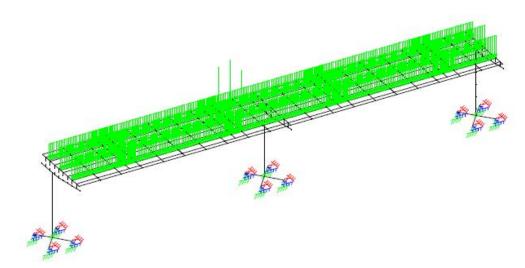


Figure 11. P-11A model – HA+KEL



Figure 12. P-11A model – Combined HB30 + HA

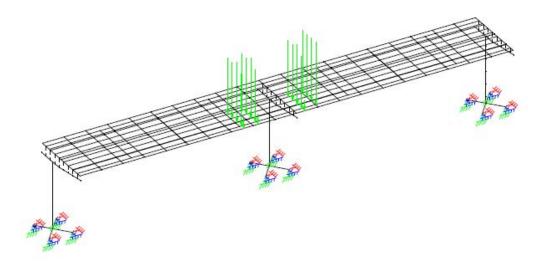


Figure 13. P-11A model – HB45 Moving Load

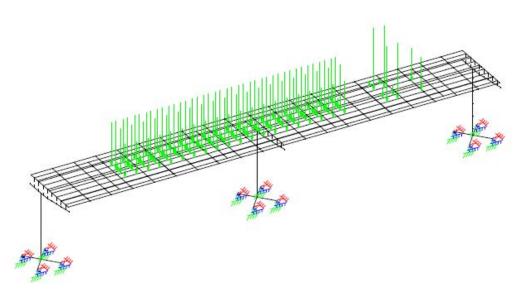


Figure 14. *P-11A model* – SV20 Moving Load

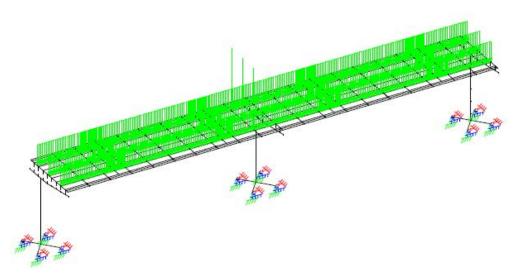


Figure 15. P-11A model – JKR MTAL

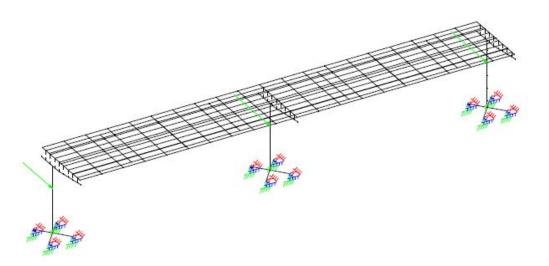


Figure 16. P-11A model – Transverse Wind Load

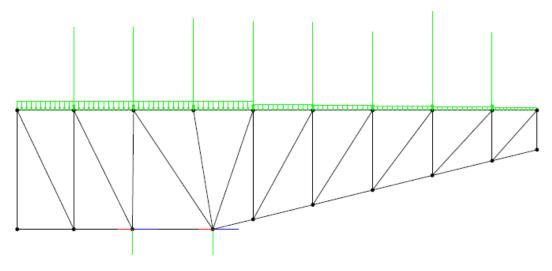


Figure 17. P-11A model – STM Model

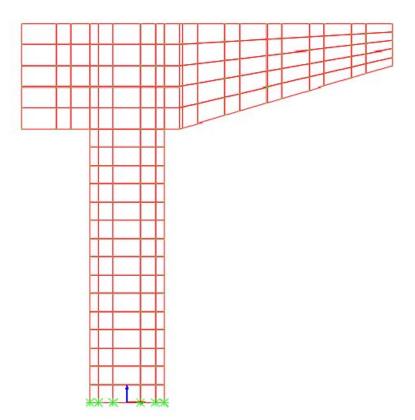


Figure 18. P-11A model - FEM Model

6.3. Pier P-25 (Type P1-A)

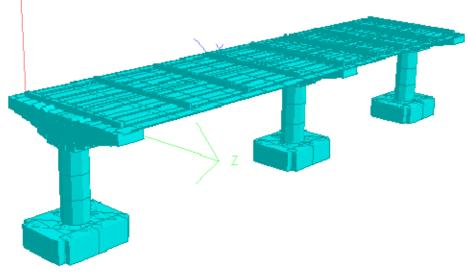


Figure 19. P-25 model

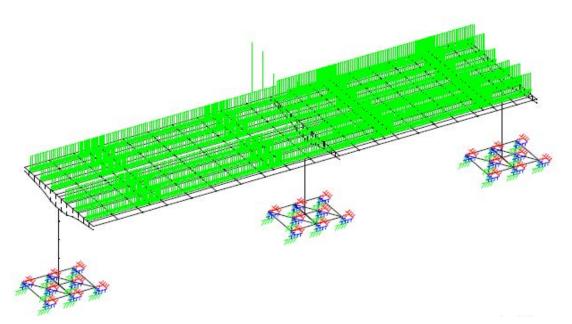


Figure 20. P-25 model – HA+KEL

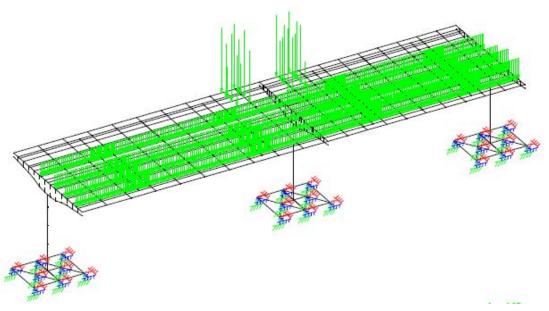


Figure 21. P-25 model – Combined HA + HB30

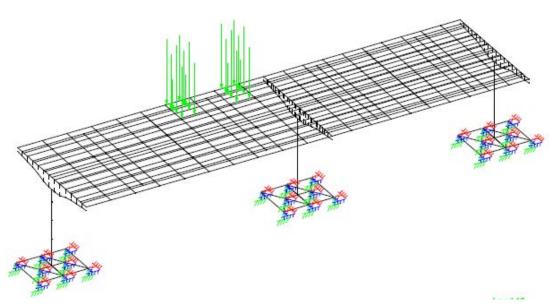


Figure 22. P-25 model – HB45 Moving Load

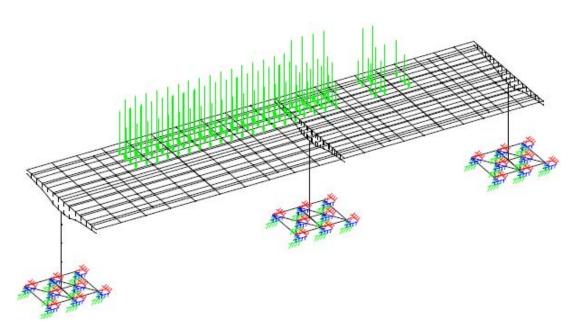


Figure 23. P-25 model – SV20 Moving Load

Final Report

6.4. Pier P-33 (Type P1-A)

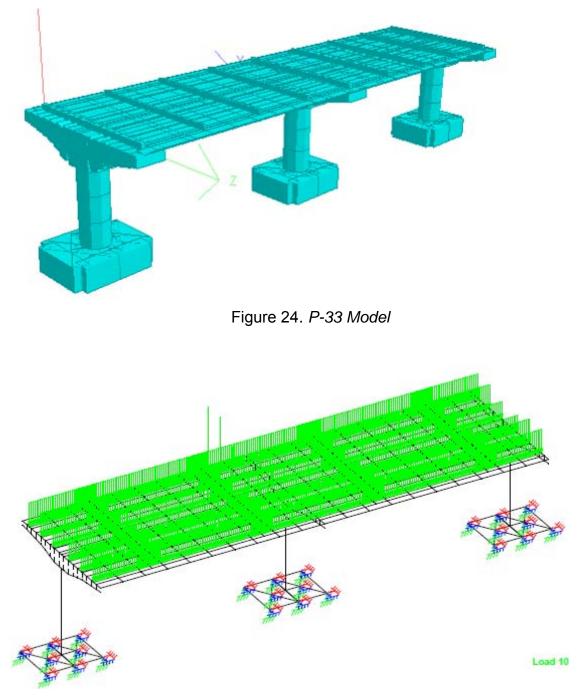


Figure 25. P-33 Model - HA+KEL

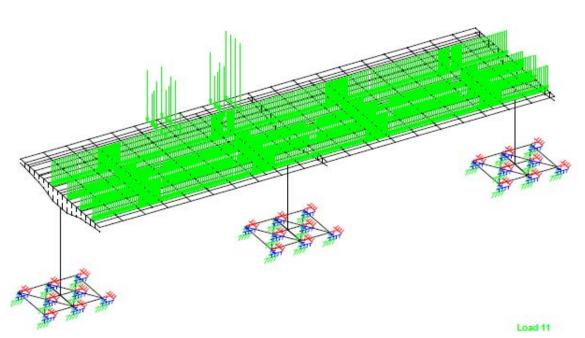


Figure 26. P-33 Model – Combined HA + HB30

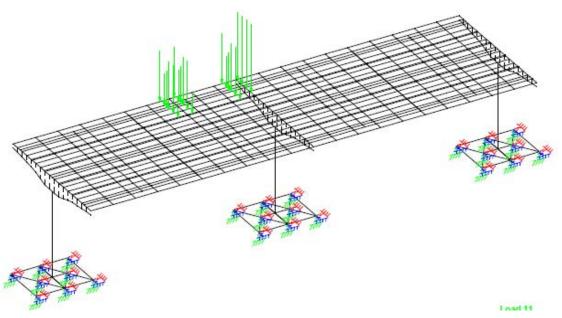


Figure 27. P-33 Model – HB45 Moving Load

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Final Report

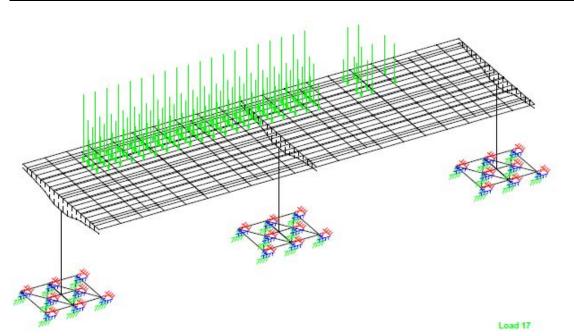


Figure 28. P-33 Model – SV20 Moving Load

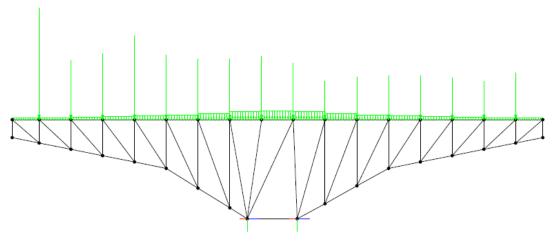


Figure 29. P-33 Model – STM Model

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Final Report

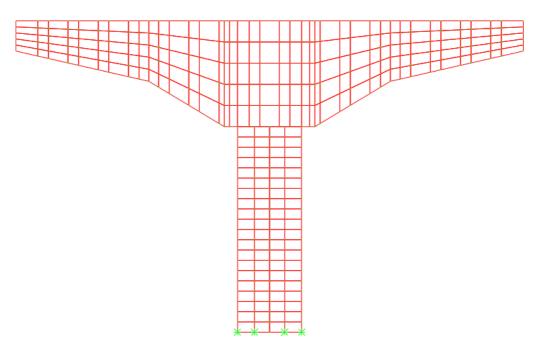


Figure 30. P-33 Model – FEM Model

7. DESIGN REVIEW FOR PIER P-11A (TYPE P1-C)

From the 3D analysis, the load effects under each load case can be obtained for P-11A.

7.1. Pier Column Check for Pier P-11A

The member forces for pier column are presented below for various load combinations. The design checks for pier column members under ULS and SLS are performed.

7.1.1 Analysis Results for Pier P-11A Column

The maximum design forces at pier column base are tabulated.

7.1.1.1 BD 37/88 (3 Notional Lanes)

Table 11.	P-11A p	ier force –	BD 37/88	(3	Notional Lanes)
10010 111			DD 01700	<u>ر</u>	

				Combination 1		
No.	Load Case	N (kN)	M (kN.m)	γ	fL	γ _{f3}
				SLS	ULS	ULS
1	SW	5073	7192	1.00	1.15	1.10
2	Deck Slab	968	1900	1.00	1.15	1.10
3	SDL (Parapet)	549	782	1.00	1.20	1.10
4	Premix	285	559	1.20	1.75	1.10
5	HA+KEL	2574	5493	1.20	1.50	1.10
6	HA+HB30	2488	5225	1.10	1.30	1.10
7	HB45	1551	6140	1.10	1.30	1.10
8	SV20	3004	5551	1.10	1.30	1.10

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms, crosshead and column

Table 12. P-11A pier force load combination – BD 37/88 (3 Notional Lanes)

SLS Design to Load Combination 1

Case #	Load Combination	N (kN)	M (kN.m)	N _g (kN)	M _g (kN.m)	M _q (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	10020	17137	6931	10545	6592
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	9667	16292	6931	10545	5747
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	8637	17300	6931	10545	6755
SLS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	10236	16652	6931	10545	6107

ULS Design to Load Combination 1

Case #	Load Combination	N (kN)	M (kN.m)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	13161	22674
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	12471	21081
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	11132	22391
ULS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	13210	21549

7.1.1.2 BD 37/88 (2 Notional Lanes)

				Combination 1		
No.	Load Case	N (kN)	M (kN.m)	γ	fL	γ _{f3}
				SLS	ULS	ULS
1	SW	5073	7192	1.00	1.15	1.10
2	Deck Slab	968	1900	1.00	1.15	1.10
3	SDL (Parapet)	549	782	1.00	1.20	1.10
4	Premix	285	559	1.20	1.75	1.10
5	HA+KEL	2169	4039	1.20	1.50	1.10
6	HA+HB30	2002	4186	1.10	1.30	1.10
7	HB45	1549	5983	1.10	1.30	1.10
8	SV20	3004	5550	1.10	1.30	1.10

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms, crosshead and column

Table 14. P-11A pier force load combination – BD 37/88 (2 Notional Lanes)

SLS Design to Load Combination 1

Case #	Load Combination	N (kN)	M (kN.m)	N _g (kN)	M _g (kN.m)	M _q (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	9534	15392	6931	10545	4847
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	9133	15150	6931	10545	4605
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	8635	17127	6931	10545	6582
SLS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	10236	16649	6931	10545	6105

ULS Design to Load Combination 1

Case #	Load Combination	N (kN)	M (kN.m)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	12492	20274
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	11777	19596
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	11129	22166
ULS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	13210	21546

7.1.1.3 JKR MTAL (3 Notional Lanes)

Table 15. P-11A	nier force – Ik	KR MTAL (3	Notional Lanes)
			NULIUNAI LANES)

				Combination 1		
No.	Load Case	N (kN)	M (kN.m)	γ	'n	γ _{f3}
				SLS	ULS	ULS
1	SW	5073	7192	1.00	1.15	1.10
2	Deck Slab	968	1900	1.00	1.15	1.10
3	SDL (Parapet)	549	782	1.00	1.20	1.10
4	Premix	285	559	1.20	1.75	1.10
5	MTAL (UDL+KEL)	2572	4788	1.20	1.50	1.10
6	MTAL (5.0kPa)	70	131	1.20	1.50	1.10

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms, crosshead and column

Table 16. P-11A pier force load combination – JKR MTAL (3 Notional Lanes) <u>SLS Design to Load Combination 1</u>

Case #	Load Combination	N (kN)	M (kN.m)	N _g (kN)	M _g (kN.m)	M _q (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (MTAL)	10101	16448	6931	10545	5903

ULS Design to Load Combination 1

Case #	Load Combination	N (kN)	M (kN.m)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (MTAL)	13273	21726

7.1.1.4 Transverse Wind Load with BD 37/88 (3 Notional Lanes)

				Combir	nation 2	
No.	Load Case	N (kN)	M (kN.m)	γ	fL	ŶfЗ
				SLS	ULS	ULS
1	SW	5073	7192	1.00	1.15	1.10
2	Deck Slab	968	1900	1.00	1.15	1.10
3	SDL (Parapet)	549	782	1.00	1.20	1.10
4	Premix	285	559	1.20	1.75	1.10
5	HA+KEL	2574	5493	1.00	1.25	1.10
6	HA+HB30	2488	5225	1.00	1.10	1.10
7	HB45	1551	6140	1.00	1.10	1.10
8	SV20	3004	5551	1.00	1.10	1.10
9	WIND	0	39	1.00	1.10	1.10

Table 17. P-11A	pier force –	BD 37/88 ((Transverse	wind load)
	p.00.00	22 01/00 (1101010100	

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms, crosshead and column

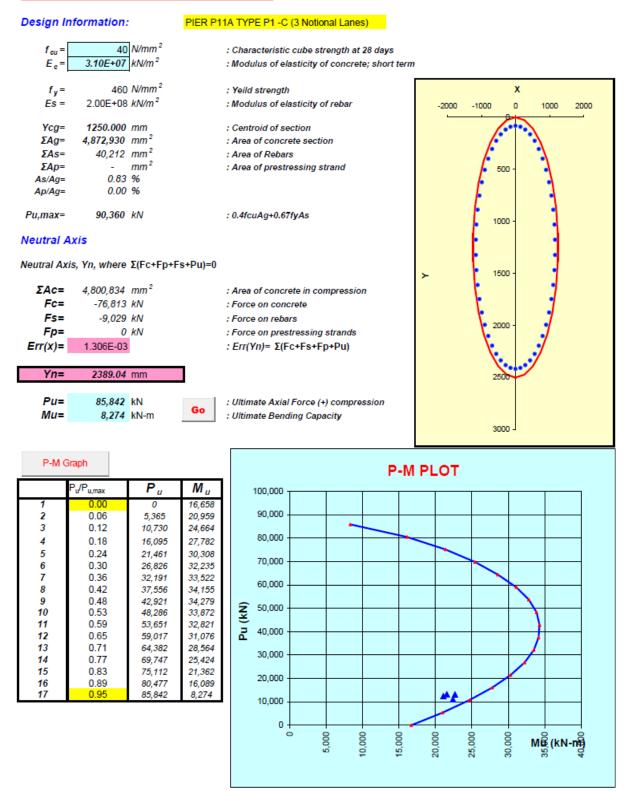
Table 18. P-11A pier force load combination – BD 37/88 (Transverse wind load)

SLS Design to Load Combination 2

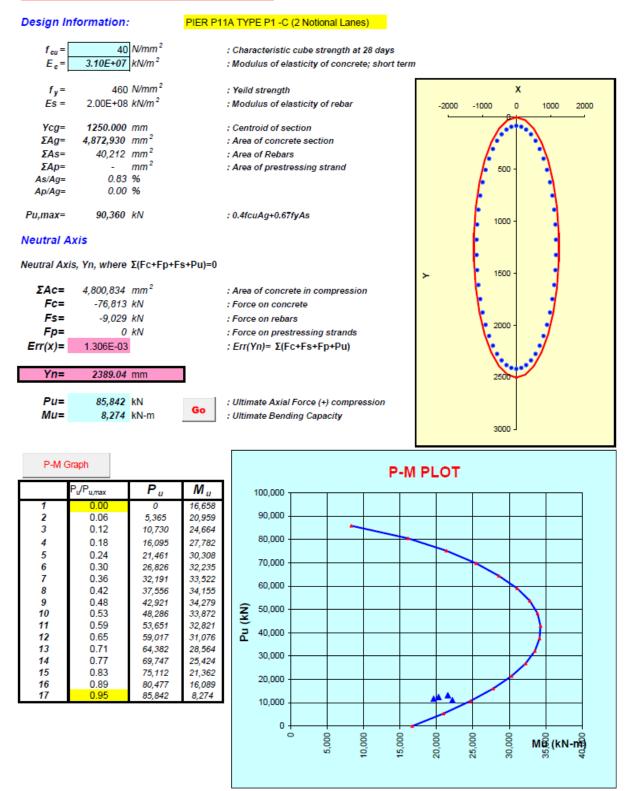
Case #	Load Combination	N (kN)	M (kN.m)
SLS1C2	(SW+Deck Slab+SDL+Premix) + (HA+KEL)		
SLS2C2	(SW+Deck Slab+SDL+Premix) + (HA+HB30)		
SLS3C2	(SW+Deck Slab+SDL+Premix) + (HB45)		
SLS4C2	(SW+Deck Slab+SDL+Premix) + (SV20)		

ULS Design to Load Combination 2

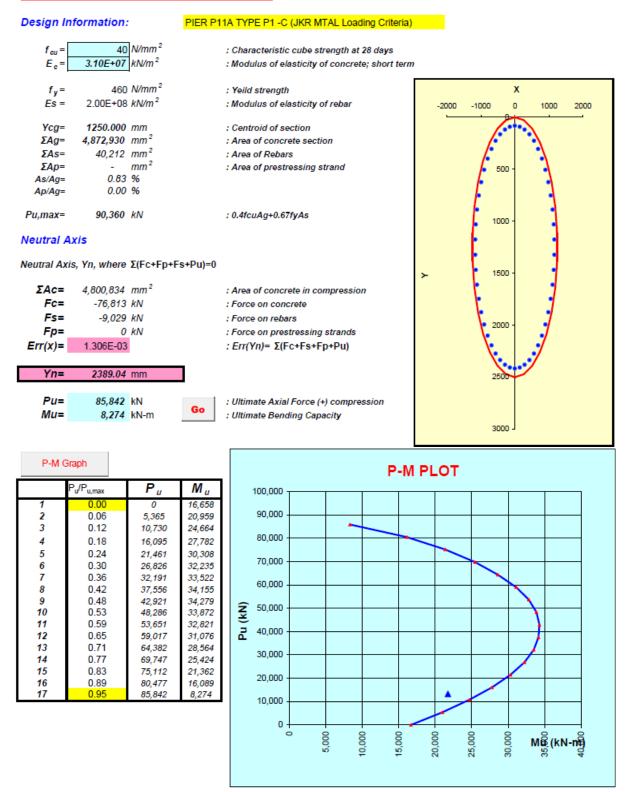
Case #	Load Combination	N (kN)	M (kN.m)
ULS1C2	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	12453	21210
ULS2C2	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	11924	19979
ULS3C2	(SW+Deck Slab+SDL+Premix) + (HB45)	10791	21087
ULS4C2	(SW+Deck Slab+SDL+Premix) + (SV20)	12549	20374


7.1.2 Sectional Capacity Check (ULS) for P-11A Column

The pier section capacity is calculated based on the following as-built parameters;


• Ø2500mm, f_{cu}=40MPa, 50-T32

From the following design checks, all the applied ULS forces lies within the P-M interaction capacity envelope; hence it can be conclude that the existing design of pier column P-11A is adequate at ULS.


7.1.2.1 BD 37/88 (3 Notional Lanes)

7.1.2.2 BD 37/88 (2 Notional Lanes)

7.1.2.3 JKR MTAL (3 Notional Lanes)

7.1.2.4 Transverse Wind Load for P-11A Column

It is found that the ultimate pier induced force for Load Combination (2) under transverse wind load condition is less critical compared to Load Combination (1). Therefore, no further check would be required.

7.1.3 Crack Width Check (SLS) for P-11A Column

The pier crack width is calculated based on the following as-built parameters

Ø2500mm, f_{cu}=40mPa, 50-T32

From the following crack width checks, the computed crack widths for pier column P-11A (Type P1-C) are summarized as follows;

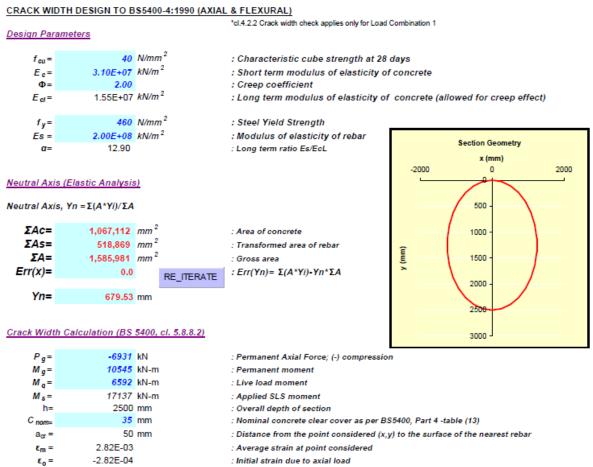
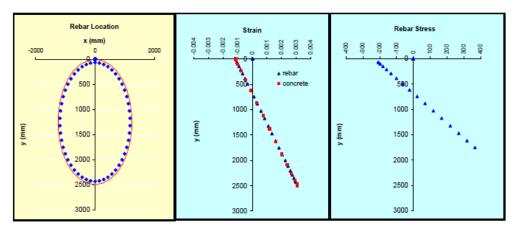

Pier Type	Crack Width (mm)						
	3 Notional	2 Notional	3 Notional				
	Lanes	Lanes	Lanes (JKR				
	(BD37/88)	(BD37/88)	MTAL)				
P1-C (P-11A)	0.416	0.370	0.398				

Table 19. Summary of P-11A SLS crack width check


Hence, the existing design of Pier P-11A <u>exceeds</u> the allowable crack width of 0.25mm for all 3 cases.

7.1.3.1 BD 37/88 (3 Notional Lanes)

TITTLE : Pier P11A Type P1-C SLS1C1 (3 Notional Lanes)

- : Initial strain due to axial load
 - : Strain due to tension stiffening effect

1	Location	To	Nearest Rel	bar						
x (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε1	٤,	€ _{5017.}	ε"	W _{max} (mm)
0	0	0	66	32	50	-0.00116	-2.82E-04	0	-1.44E-03	uncracked
0	0	0	0	0	0	-0.00116	-2.82E-04	0	-1.44E-03	uncracked
0	0	0	0	0	0	-0.00116	-2.82E-04	0	-1.44E-03	uncracked
0	0	0	0	0	0	-0.00116	-2.82E-04	0	-1.44E-03	uncracked
0	0	0	0	0	0	-0.00116	-2.82E-04	0	-1.44E-03	uncracked
0	2500	0	2434	32	50	0.003104	-2.82E-04	0.00E+00	2.82E-03	0.416

Private & Confidential

ε_{stm} =

(1-Mq/Mg) =

0.00E+00

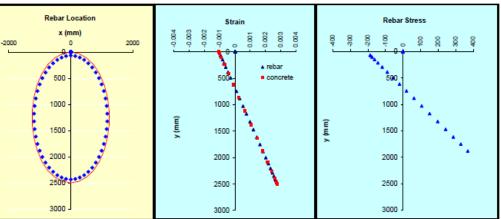
3.75E-01

2000

0

7.1.3.2 BD 37/88 (2 Notional Lanes)

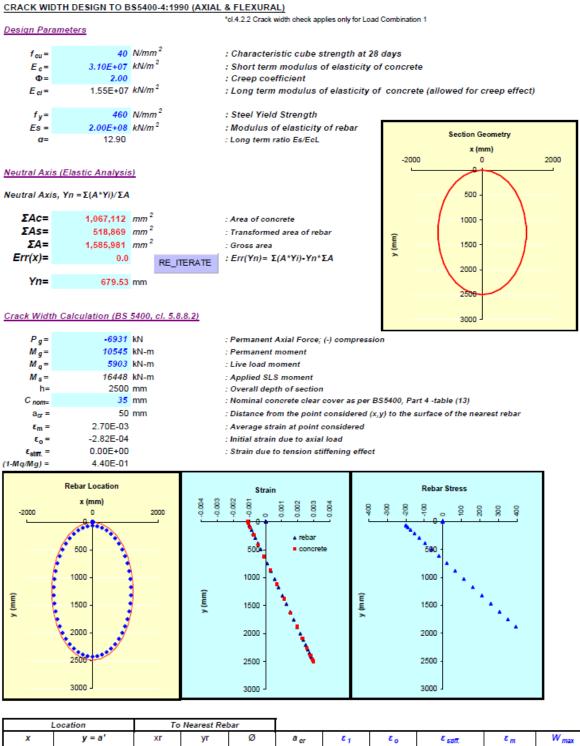
TITTLE : Pier P11A Type P1-C SLS1C1 (2 Notional Lanes) CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL) *cl.4.2.2 Crack width check applies only for Load Combination 1 Design Parameters 40 N/mm² f_{cu}= : Characteristic cube strength at 28 days 3.10E+07 kN/m² $E_c =$: Short term modulus of elasticity of concrete 2.00 : Creep coefficient Φ= 1.55E+07 kN/m² E_{cl}= : Long term modulus of elasticity of concrete (allowed for creep effect) 460 N/mm² : Steel Yield Strength $f_y =$ Es = 2.00E+08 kN/m² : Modulus of elasticity of rebar Section Geometry 12.90 : Long term ratio Es/EcL α= x (mm) -2000 Neutral Axis (Elastic Analysis) Neutral Axis, $Yn = \Sigma(A^*Yi)/\Sigma A$ 500 $\Sigma Ac=$ 1,067,112 mm² : Area of concrete 1000 ΣAs= 518,869 mm² : Transformed area of rebar Ĩ 1,585,981 mm² ΣA= : Gross area 1500 Err(x)=: $Err(Yn) = \Sigma(A^*Yi) \cdot Yn^*\Sigma A$ 0.0 RE_ITERATE 2000 Yn=679.53 mm 2500 Crack Width Calculation (BS 5400, cl. 5.8.8.2) 3000 $P_g =$ -6931 kN : Permanent Axial Force; (-) compression 10545 kN-m $M_g =$: Permanent moment M _ = 4847 kN-m : Live load moment 15392 kN-m M s= : Applied SLS moment h= 2500 mm : Overall depth of section 35 mm : Nominal concrete clear cover as per BS5400, Part 4 -table (13) C nom= 50 mm : Distance from the point considered (x,y) to the surface of the nearest rebar a_{cr} = ε_m = 2.51E-03 : Average strain at point considered


: Initial strain due to axial load : Strain due to tension stiffening effect

ε_{stm} = 0.00E+00 0.540350877 (1-Mq/Mg) =

ε0 =

(mm)


-2.82E-04

l	Location	To	Nearest Rel	bar						
x (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε1	٤,	€ ₅₀ 17.	ε _m	W _{max} (mm)
0	0	0	66	32	50	-0.00104	-2.82E-04	0	-1.32E-03	uncracked
0	0	0	0	0	0	-0.00104	-2.82E-04	0	-1.32E-03	uncracked
0	0	0	0	0	0	-0.00104	-2.82E-04	0	-1.32E-03	uncracked
0	0	0	0	0	0	-0.00104	-2.82E-04	0	-1.32E-03	uncracked
0	0	0	0	0	0	-0.00104	-2.82E-04	0	-1.32E-03	uncracked
0	2500	0	2434	32	50	0.002788	-2.82E-04	0.00E+00	2.51E-03	0.370

7.1.3.3 JKR MTAL (3 Notional Lanes)

TITTLE : Pier P11A Type P1-C SLS1C1 (JKR MTAL Criteria)

L	ocation	To	Nearest Rel	bar						
х (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε1	٤ ₀	€ saff.	ε _m	W _{max} (mm)
0	0	0	66	32	50	-0.00111	-2.82E-04	0	-1.39E-03	uncracked
0	0	0	0	0	0	-0.00111	-2.82E-04	0	-1.39E-03	uncracked
0	0	0	0	0	0	-0.00111	-2.82E-04	0	-1.39E-03	uncracked
0	0	0	0	0	0	-0.00111	-2.82E-04	0	-1.39E-03	uncracked
0	0	0	0	0	0	-0.00111	-2.82E-04	0	-1.39E-03	uncracked
0	2500	0	2434	32	50	0.002979	-2.82E-04	0.00E+00	2.70E-03	0.398

7.2. Crosshead Check for Pier P-11A

The member forces of crosshead are presented below for various load combinations. The design checks for crosshead members under ULS and SLS are performed based on the following as-built drawing.

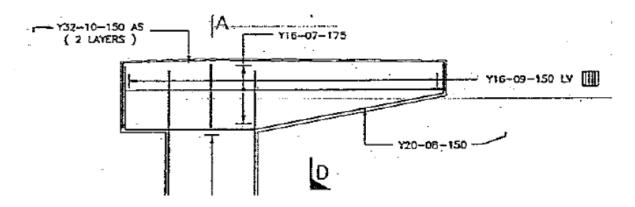


Figure 31. P-11A As-built crosshead reinforcement

7.2.1 Analysis Results for Pier P-11A Crosshead

The maximum design forces for crosshead are tabulated for various cases.

7.2.1.1 BD 37/88 (3 Notional Lanes)

		Mmax	Combir	nation 1	
No.	Load Case	Mmax (kN.m)	γ	′fL	ŶfЗ
		(((((((((((((((((((((((((((((((((((((((SLS	ULS	ULS
1	SW	8324	1.00	1.15	1.10
2	Deck Slab	2142	1.00	1.15	1.10
3	SDL (Parapet)	1168	1.00	1.20	1.10
4	Premix	630	1.20	1.75	1.10
5	HA+KEL	5945	1.20	1.50	1.10
6	HA+HB30	5762	1.10	1.30	1.10
7	HB45	5989	1.10	1.30	1.10
8	SV20	5907	1.10	1.30	1.10

Table 20. P-11A crosshead moment – BD 37/88 (3 Notional Lanes)

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms and crosshead

Table 21. P-11A crosshead moment load combination – BD 37/88 (3 Notional Lanes) <u>SLS Design to Load Combination 1</u>

Case #	Load Combination	M (kN.m)	M_q (kN.m)	M _g (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	19525	12391	7134
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	18729	12391	6338
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	18979	12391	6588
SLS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	18889	12391	6498

ULS Design to Load Combination 1

Case #	Load Combination	M (kN.m)
	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	25805
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	24235
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	24560
ULS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	24443

Table 22. P-11A crosshead shear @ 2.5m depth – BD 37/88 (3 Notional Lanes)

			Combir	Combination 1 γ _{fL}	
No.	Load Case	Vmax (kN)	γ		
			SLS	ULS	ULS
1	SW	2352	1.00	1.15	1.10
2	Deck Slab	591	1.00	1.15	1.10
3	SDL (Parapet)	273	1.00	1.20	1.10
4	Premix	174	1.20	1.75	1.10
5	HA+KEL	1713	1.20	1.50	1.10
6	HA+HB30	1685	1.10	1.30	1.10
7	HB45	1476	1.10	1.30	1.10
8	SV20	1970	1.10	1.30	1.10

*StaadPro member 30105

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms and crosshead

Table 23. P-11A crosshead shear @ 2.5m depth load combination – BD 37/88 (3 Notional Lanes)

ULS Design to Load Combination 1

	Load Combination	V (kN)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	7245
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	6828
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	6529
ULS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	7235

7.2.1.2 BD 37/88 (2 Notional Lanes)

		Mmov	Combination 1		
No.	Load Case	Mmax (kN.m)	γ	'fL	ŶfЗ
		((((),())))	SLS	ULS	ULS
1	SW	8324	1.00	1.15	1.10
2	Deck Slab	2142	1.00	1.15	1.10
3	SDL (Parapet)	1168	1.00	1.20	1.10
4	Premix	630	1.20	1.75	1.10
5	HA+KEL	4396	1.20	1.50	1.10
6	HA+HB30	4581	1.10	1.30	1.10
7	HB45	5838	1.10	1.30	1.10
8	SV20	5906	1.10	1.30	1.10

Table 24. P-11A crosshead moment – BD 37/88 (2 Notional Lanes)

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms and crosshead

Table 25. P-11A crosshead moment load combination – BD 37/88 (2 Notional Lanes)

SLS Design to Load Combination 1

Case #	Load Combination	M (kN.m)	M _g (kN.m)	M _q (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	17666	12391	5275
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	17431	12391	5039
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	18814	12391	6422
SLS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	18888	12391	6497

ULS Design to Load Combination 1

Case #	Load Combination	M (kN.m)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	23249
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	22547
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	24345
	(SW+Deck Slab+SDL+Premix) + (SV20)	24442

			Combination 1		
No.	Load Case	Vmax (kN)	γ	΄fL	γ _{f3}
			SLS	ULS	ULS
1	SW	2352	1.00	1.15	1.10
2	Deck Slab	591	1.00	1.15	1.10
3	SDL (Parapet)	273	1.00	1.20	1.10
4	Premix	174	1.20	1.75	1.10
5	HA+KEL	1246	1.20	1.50	1.10
6	HA+HB30	1268	1.10	1.30	1.10
7	HB45	1465	1.10	1.30	1.10
8	SV20	1967	1.10	1.30	1.10

*StaadPro member 30105

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms and crosshead

Table 27. P-11A crosshead shear @ 2.5m depth load combination – BD 37/88 (2 Notional Lanes)

ULS Design to Load Combination 1

	Load Combination	V (kN)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	6475
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	6231
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	6514
ULS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	7231

7.2.1.3 JKR MTAL (3 Notional Lanes)

Table 28. P-11A crosshead moment – JKR MTAL	(3 Notional Lanes)

		Mmax	Combination 1		
No.	Load Case	(kN.m)	γ	fL	Ŷfз
		(((((((((((((((((((((((((((((((((((((((SLS	ULS	ULS
1	SW	8324	1.00	1.15	1.10
2	Deck Slab	2142	1.00	1.15	1.10
3	SDL (Parapet)	1168	1.00	1.20	1.10
4	Premix	630	1.20	1.75	1.10
5	MTAL (UDL+KEL)	5394	1.20	1.50	1.10
6	MTAL (5.0kPa)	168	1.20	1.50	1.10

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms and crosshead

Table 29. P-11A crosshead moment load combination – JKR MTAL (3 Notional Lanes)

SLS Design to Load Combination 1

Case #	Load Combination	M (kN.m)	M _q (kN.m)	M _g (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (MTAL)	19065	12391	6674

ULS Design to Load Combination 1

Case #	Load Combination	M (kN.m)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (MTAL)	25173

			Combir	nation 1	
No.	Load Case	∨max (kN)	γ	fL	Ŷfз
			SLS	ULS	ULS
1	SW	2352	1.00	1.15	1.10
2	Deck Slab	591	1.00	1.15	1.10
3	SDL (Parapet)	273	1.00	1.20	1.10
4	Premix	174	1.20	1.75	1.10
5	MTAL (UDL+KEL)	1591	1.20	1.50	1.10
6	MTAL (5.0kPa)	39	1.20	1.50	1.10

Table 30. P-11A crosshead shear @ 2.5m depth – JKR MTAL (3 Notional Lanes)

*StaadPro member 30105

*SW includes 6 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms and crosshead

Table 31. P-11A crosshead shear @ 2.5m depth load combination – JKR MTAL (3 Notional Lanes)

ULS Design to Load Combination 1

Case #	Load Combination	V (kN)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (MTAL)	7107

7.2.2 Section Capacity Check (ULS) for P-11A Crosshead

The crosshead is checked for its moment and shear capacity under Ultimate Limit State (ULS).

The crosshead section capacity is calculated based on the following as-built information:-

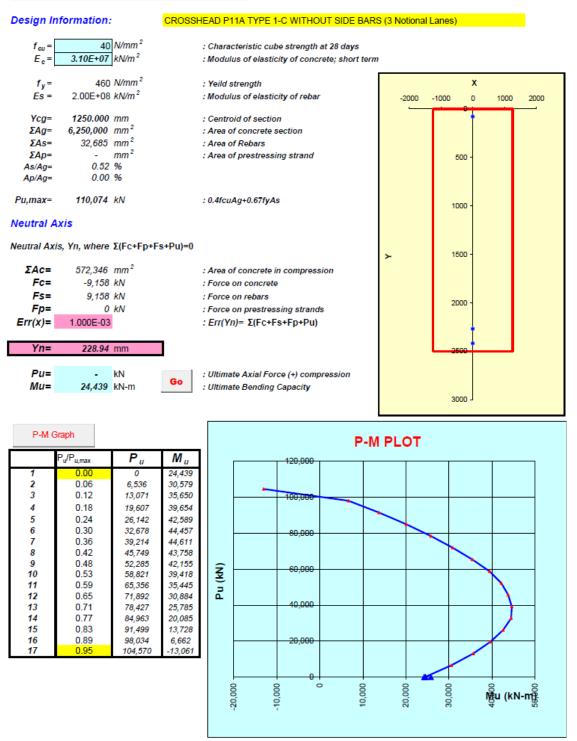
Crosshead P-11A (Type P1-C)

- Width = 2500mm, Depth = 2500mm, f_{cu}=40MPa
- Top Reinforcement = T32-150 (2 layers)
- Bottom Reinforcement = T20 150 (1 layer)

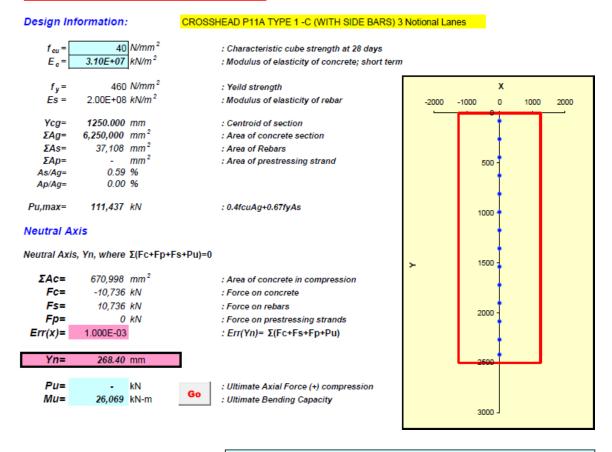
7.2.2.1 Ultimate Moment Capacity Check for P-11A Crosshead

The computed crosshead ultimate moment capacities for Pier P-11A (Type P1-C) are computed and compared with the ULS applied moments.

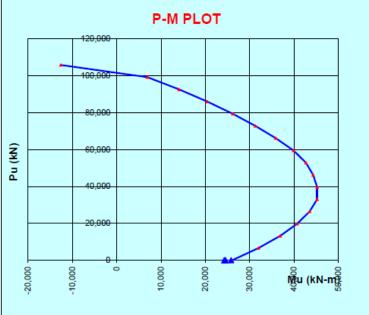
	Ult. Moment Capacity (kN.m)		Maximum		
Loading Criteria	Without Sidebar	With Sidebar	ULS Moment (kN.m)	Capacity Ratio	
BD 37/88 (3 Notional Lanes)	24,439	26,069	25,805	1.06	
BD 37/88 (2 Notional Lanes)	24,439	26,069	24,442	1.00	
JKR MTAL (3 Notional Lanes)	24,439	26,069	25,173	1.03	


*Capacity ratio is based on Maximum ULS Moment / Ult. Moment Capacity (without sidebar)

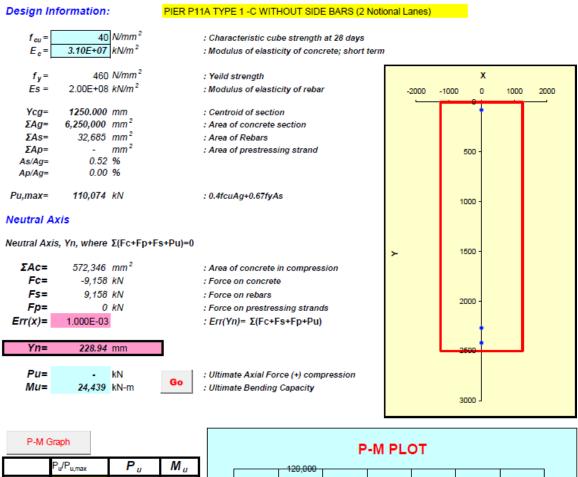
The applied moments exceed the P-M interaction envelopes when the ultimate moment capacity is analyzed without taking into consideration the side reinforcement. However, when the side reinforcement is incorporated in the ultimate capacity calculation, the applied moments are within the P-M interaction envelope. Hence the existing crosshead moment capacity design for P-11a (Type P1-C) is marginally pass at ULS.


The detailed computations of the sectional moment capacities are presented below.

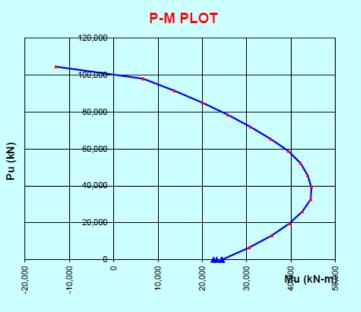
7.2.2.1.1 BD 37/88 (3 Notional Lanes)


*Without Side Reinforcement

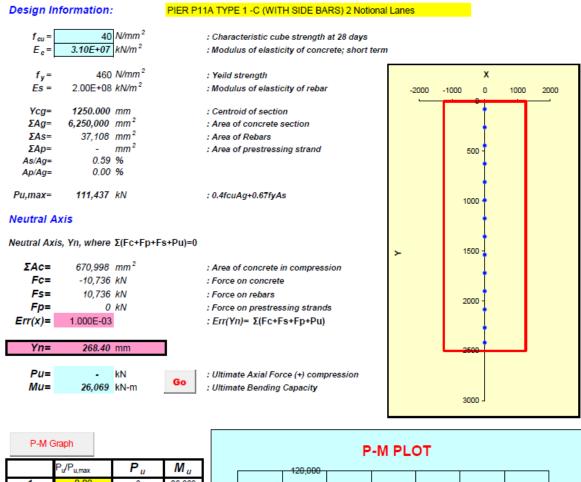
* With Side Reinforcement T16-175 (Both Sides)

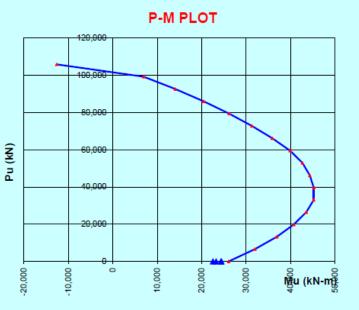


P-M G	Graph			
	P _u /P _{u,max}	P _u	M _u	
1	0.00	0	26,069	
2	0.06	6,617	32,021	
3	0.12	13,233	36,914	
4	0.18	19,850	40,749	
5	0.24	26,466	43,530	
6	0.30	33,083	45,242	
7	0.36	39,699	45,242	
8	0.42	46,316	44,331	
9	0.48	52,932	42,678	
10	0.53	59,549	39,889	
11	0.59	66,166	35,887	
12	0.65	72,782	31,306	
13	0.71	79,399	26,176	
14	0.77	86,015	20,442	
15	0.83	92,632	14,046	
16	0.89	99,248	6,927	
17	0.95	105,865	-12,615	

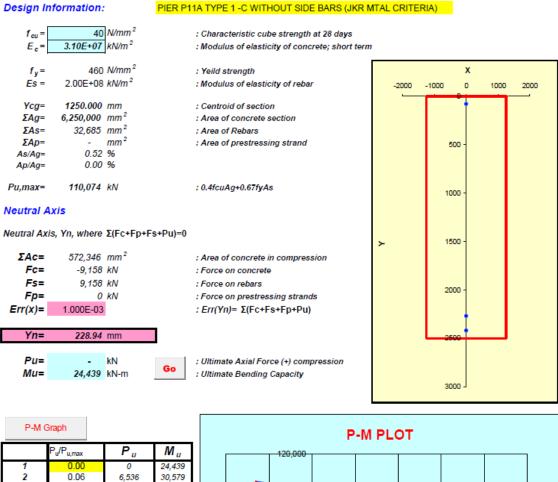


7.2.2.1.2 BD 37/88 (2 Notional Lanes)

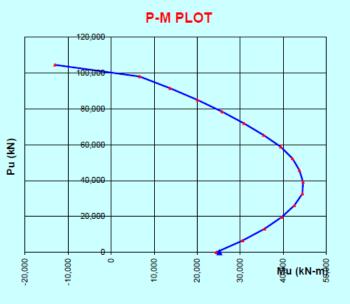

* Without Side Reinforcement


	Pu/Pu,max	P _u	M _u
1	0.00	0	24,439
2	0.06	6,536	30,579
3	0.12	13,071	35,650
4	0.18	19,607	39,654
5	0.24	26,142	42,589
6	0.30	32,678	44,457
7	0.36	39,214	44,611
8	0.42	45,749	43,758
9	0.48	52,285	42,155
10	0.53	58,821	39,418
11	0.59	65,356	35,445
12	0.65	71,892	30,884
13	0.71	78,427	25,785
14	0.77	84,963	20,085
15	0.83	91,499	13,728
16	0.89	98,034	6,662
17	0.95	104,570	-13,061

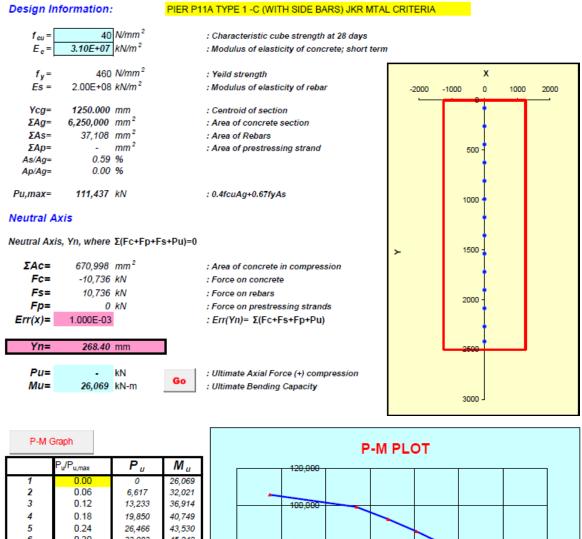
* With Side Reinforcement T16-175 (Both Sides)

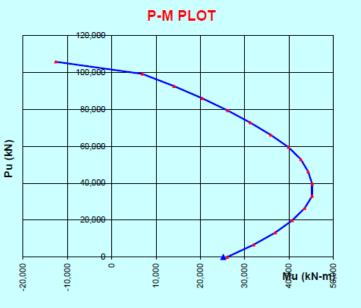


	Pu/Pu,max	Pu	Mu
1	0.00	0	26,069
2	0.06	6,617	32,021
3	0.12	13,233	36,914
4	0.18	19,850	40,749
5	0.24	26,466	43,530
6	0.30	33,083	45,242
7	0.36	39,699	45,242
8	0.42	46,316	44,331
9	0.48	52,932	42,678
10	0.53	59,549	39,889
11	0.59	66,166	35,887
12	0.65	72,782	31,306
13	0.71	79,399	26,176
14	0.77	86,015	20,442
15	0.83	92,632	14,046
16	16 0.89		6,927
17	0.95	105,865	-12,615



7.2.2.1.3 JKR MTAL (3 Notional Lanes)


* Without Side Reinforcement


	P _u /P _{u,max}	P _u	Mu
1	0.00	0	24,439
2	0.06	6,536	30,579
3	0.12	13,071	35,650
4	0.18	19,607	39,654
5	0.24	26,142	42,589
6	0.30	32,678	44,457
7	0.36	39,214	44,611
8	0.42	45,749	43,758
9	0.48	52,285	42,155
10	0.53	58,821	39,418
11	0.59	65,356	35,445
12	0.65	71,892	30,884
13	0.71	78,427	25,785
14	0.77	84,963	20,085
15	0.83	91,499	13,728
16	0.89	98,034	6,662
17	0.95	104,570	-13,061

* With Side Reinforcement T16-175 (Both Sides)

1	0.00	0	26,069
2	0.06	6,617	32,021
3	0.12	13,233	36,914
4	0.18	19,850	40,749
5	0.24	26,466	43,530
6	0.30	33,083	45,242
7	0.36	39,699	45,242
8	0.42	46,316	44,331
9	0.48	52,932	42,678
10	0.53	59,549	39,889
11	0.59	66,166	35,887
12	0.65	72,782	31,306
13	0.71	79,399	26,176
14	0.77	86,015	20,442
15	0.83	92,632	14,046
16	0.89	99,248	6,927
17	0.95	105,865	-12,615

7.2.2.2 Ultimate Shear Capacity Check for P-11A Crosshead

The shear link required for crosshead of Pier P-11A (Type P1-C) under

ULS is computed and compared to the shear link provided.

Table 33. Summary of P-11A crosshead ULS shear force capacity check

Asv/sv _{req'd} Load Case Capacity Ratio Asv/sv prov ULS1C1 7.72 8.04 0.96 ULS2C1 7.28 8.04 0.90 6.96 ULS3C1 8.04 0.87 7.71 8.04 ULS4C1 0.96

BD 37/88 (3 Notional Lanes) @ 2.5m Depth

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

BD 37/88 (2 Notional Lanes) @ 2.5m Depth

Load Case	Asv/sv _{req'd}	Asv/sv prov	Capacity Ratio
ULS1C1	6.90	8.04	0.86
ULS2C1	6.64	8.04	0.83
ULS3C1	6.94	8.04	0.86
ULS4C1	7.70	8.04	0.96

*Capacity ratio is based on Asv/sv regid / Asv/sv prov

JKR MTAL @ 2.5m Depth

Load Case	Asv/sv _{req'd}	Asv/sv prov	Capacity Ratio
ULS1C1	7.57	8.04	0.94

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

Based on the above, the shear link provided in the as-built drawings is more than the requirement. Hence, the existing crosshead shear design for P-11A (Type P1-C) is adequate at ULS.

The detailed computations of the sectional shear capacities are presented as below.

7.2.2.2.1 BD 37/88 (3 Notional Lanes)

*ULS1C1

f _{cu} f _y b d	= = =	40 460 2,500 2,343	N/mm ² N/mm ² mm mm			
V _{ult} v	= =	7,245 1.24	kN N/mm ²	Remarks :	0.К	
Depth Factor	, ξ _s =	0.700				
A _{s,prov} Vc V A _{sv} /s _{v,req'd}	= = > =	27,336 0.57 ξ _s v _c 7.72	mm ² N/mm ²	(2 layers of 17T32) ξ _s v _c	=	0.40
A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	=	8.04 Sufficient	1	(3T16-150)		

*ULS2C1

Element ID = P-11A Crosshead (ULS2C1 - BD 37/88 3 Notional Lanes) @ 2.5m Depth

f _{cu} f _y b d	= = =	40 460 2,500 2,343	N/mm ² N/mm ² mm mm			
V _{ult}	= =	6,828 1.17	kN N/mm ²	Remarks :	0.К	
Depth Facto	r, ξ _s =	0.700				
A _s V _c V A _{sv} /s _{v,req'd}	= = > =	27,336 0.57 ξ _s v _c 7.28	mm ² N/mm ²	(2 layers of 17T32) $\xi_s v_c$	=	0.40
A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	=	8.04 Sufficient	1	(3T16-150)		

*ULS3C1

Element ID = P-11A Crosshead (ULS3C1 - BD 37/88 3 Notional Lanes) @ 2.5m Depth

f _{cu} f _y b d	= = =	40 460 2,500 2,343	N/mm ² N/mm ² mm mm			
V _{ult} v	= =	6,529 1.11	kN N/mm ²	Remarks :	0.К	
Depth Factor	, ξ _s =	0.700				
A _s V _c V A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	= > =	27,336 0.57 ξ _s v _c 6.96 8.04 Sufficient	N/mm ²	(2 layers of 17T32) ξ _s v _c (3T16-150)	=	0.40

*ULS4C1

Element ID = P-11A Crosshead (ULS4C1 - SV20) @ 2.5m Depth

f _{cu} f _y b d	= = =	40 460 2,500 2,343	N/mm ² N/mm ² mm mm			
V _{ult} v	= =	7,235 1.24	kN N/mm ²	Remarks :	0.К	
Depth Factor	, ξ _s =	0.700				
A _s v _c v A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	= = > =	0.57 ξ _s v _c 7.71	mm ² N/mm ²	(2 layers of 17T32) ξ _s v _c	=	0.40
A _{sv} /s _{v,prov}	=	8.04 Sufficient	!	(3T16-150)		

7.2.2.2.2 BD 37/88 (2 Notional Lanes)

*ULS1C1

Element ID = P-11A Crosshead (ULS1C1 - BD 37/88 2 Notional Lanes) @ 2.5m Depth

f _{cu} = f _y = b = d =	40 460 2,500 2,343	N/mm ² N/mm ² mm mm			
V _{ult} = v =	6,475 1.11	kN N/mm ²	Remarks :	0.К	
Depth Factor, ξ_s	= 0.700				
$\begin{array}{rcl} A_{s} & = & \\ v_{c} & = & \\ v & > & \\ A_{sv}/s_{v,req'd} & = & \\ A_{sv}/s_{v,prov} & = & \end{array}$	27,336 0.57 ξ _s v _c 6.90 8.04 Sufficient	N/mm ²	(2 layers of 17T32) ξ _s v _c (3T16-150)	=	0.40

*ULS2C1

Element ID = P-11A Crosshead (ULS2C1 - BD 37/88 2 Notional Lanes) @ 2.5m Depth

f _{cu} f _y b d	= = =	40 460 2,500 2,343	N/mm ² N/mm ² mm mm			
V _{ult}	=	6,231	kN			
v	=	1.06	N/mm ²	Remarks :	0.К	
Depth Factor,	ξ _s =	0.700				
As	=	27,336	mm ²	(2 layers of 17T32)		
Vc	=	0.57	N/mm ²	ξ _s v _c	=	0.40
v	>	ξ _s v _c				
A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	=	6.64				
A _{sv} /s _{v,prov}	=	8.04		(3T16-150)		
		Sufficient	1			

*ULS3C1

Element ID = P-11A Crosshead (ULS3C1 - BD 37/88 2 Notional Lanes) @ 2.5m Depth

f _{cu} f _y b d	= = =	40 460 2,500 2,343	N/mm ² N/mm ² mm mm			
V _{ult} v	= =	6,514 1.11	kN N/mm ²	Remarks :	0.К	
Depth Factor,	, ξ _s =	0.700				
A _s V _c V	= = >	0.57 ξ _s v _c	mm ² N/mm ²	(2 layers of 17T32) ξ _s v _c	=	0.40
A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	=	6.94 8.04 Sufficient	!	(3T16-150)		

*ULS4C1

Element ID = P-11A Crosshead (ULS4C1 - BD 37/88 2 Notional Lanes) @ 2.5m Depth

f _{cu} f _y b d	= = = =	40 460 2,500 2,343	N/mm ² N/mm ² mm mm			
V _{ult}	= =	7,231 1.23	kN N/mm ²	Remarks :	0.К	
Depth Factor	r, ξ _s =	0.700				
A _s V _c V A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	= > =	27,336 0.57 ξ _s v _c 7.70 8.04 Sufficient	N/mm ²	(2 layers of 17T32) ξ _s v _c (3T16-150)	=	0.40

7.2.2.2.3 JKR MTAL (3 Notional Lanes)

*ULS1C1

Element ID = P-11A Crosshead (ULS1C1 - JKR MTAL 3 Notional Lanes) @ 2.5m Depth

f _{cu} f _y b d	= = =	40 460 2,500 2,343	N/mm ² N/mm ² mm mm			
V _{ult}	=	7,107	kN			
V	=	1.21	N/mm ²	Remarks :	0.К	
Depth Factor	, ξ _s =	0.700				
As	=	27,336	mm ²	(2 layers of 17T32)		
Vc	=	0.57	N/mm ²	$\xi_s v_c$	=	0.40
v	>	ξsvc				
A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	=	7.57				
A _{sv} /s _{v,prov}	=	8.04		(3T16-150)		
		Sufficient	1			

7.2.3 Crack Width Check (SLS) for Pier P-11A Crosshead

The crosshead crack width is calculated based on the following as-built parameters:-

Crosshead P-11A (Type P1-C)

- Width = 2500mm, Depth = 2500mm, f_{cu}=40MPa
- Top Reinforcement = T32-150 (2 layers)
- Bottom Reinforcement = T20 150 (1 layer)

The computed crosshead crack widths for Pier P-11A (Type P1-C) are summarized as follows:-

Table 34. Summary of P-11A crosshead SLS crack width check

	Crack Wi	dth (mm)	
Loading Criteria	Without Sidebar	With Sidebar	
BD 37/88 (3 Notional Lanes)	0.270	0.255	
BD 37/88 (2 Notional Lanes)	0.196	0.181	
JKR MTAL (3 Notional Lanes)	0.252	0.238	

The computed crack widths for 3 notional lanes under BD37/88 and JKR MTAL loading criteria without taking side reinforcement into consideration are 0.270mm and 0.252mm, which exceed the allowable crack width of 0.250mm. When side reinforcement is incorporated into the design check, the computed crack width under BD 37/88 is 0.255mm which still exceeds the allowable limit. However, under JKR MTAL is 0.238mm which is less than the allowable limit.

Under BD 37/88 2 notional lanes criteria, both the design checks with and without side reinforcement are 0.181mm and 0.196mm respectively which are less than the allowable crack width of 0.250mm.

The detailed computation of the crack widths are presented below.

7.2.3.1 BD 37/88 (3 Notional Lanes)

* Without Side Reinforcement

TITTLE : Crosshead P11A Type P1-C SLS1C1 (WITHOUT SIDEBAR) 3 Notional Lanes

CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL)

esign Parame	tore		*cl.4.2.2 Crack width check applies only	for Load Combination 1	
resign Faranie	iters				
f _{cu} =	40	N/mm ²	: Characteristic cube strength	h at 28 days	
E _c =	3.10E+07	kN/m ²	: Short term modulus of elast	ticity of concrete	
Φ=	2.00		: Creep coefficient	-	
E _{cl} =	1.55E+07	kN/m ²	: Long term modulus of elasti	ticity of concrete (allowed for creep effect)	
$f_{y} =$	460	N/mm ²	: Steel Yield Strength		
Es =	2.00E+08	kN/m ²	: Modulus of elasticity of reba	ar	
a=	12.90		: Long term ratio Es/EcL	Section Geometry	
				x (mm)	
				-2000 0 20	000
Veutral Axis (E	lastic Analysis	<u>s)</u>			۰.
Veutral Axis, Y	$n = \Sigma (A^*Yi) / \Sigma A$			500 -	
		2			
ΣAc=	1,661,123		: Area of concrete	1000 -	
ΣAs=	421,744		: Transformed area of rebar	Ê	
Σ Α=	2,082,867	mm*	: Gross area	E 1500 -	
Err(x)=	0.0	RE_ITER	ATE : $Err(Yn) = \Sigma(A^*Yi) \cdot Yn^*\Sigma A$	2000 -	
Yn=	664.45	mm			
				2500	
Crack Width Ca	alculation (BS	5400, cl. 5.8.8.2	<u>9)</u>	3000	
$P_q =$	0	kN	: Permanent Axial Force; (-) com	pression	
$M_{q} =$	12391	kN-m	: Permanent moment	-	
M _ =	7134	kN-m	: Live load moment		
M _s =	19525	kN-m	: Applied SLS moment		
h=	2500	mm	: Overall depth of section		
C nom=	35	mm	: Nominal concrete clear cover as	s per BS5400, Part 4 -table (13)	
a _{or} =	66	mm	: Distance from the point conside	ered (x,y) to the surface of the nearest rebar	
ε _m =	1.41E-03		: Average strain at point consider	ered	
ε. =	0.00E+00		: Initial strain due to axial load		
			: Strain due to tension stiffening	- 10 1	
ε _{stiff} =	-4.22E-04		. Strain due to tension stinening	enect	

4	2000	Rebar Location x (mm) 0	2000	-0.004	Stra 0 0000 0 -0 000	00 3 00 1 00 1 00 1 00 1 00 1 00 1 00 1	400	Rebar S	tress
		500 -		<u> </u>	500	▲ rebar ■ concrete		500 -	
		1000 -			1000 -			1000 -	
y (mm)		1500 -		y (mm)	1500 -		y (mm)	1500 -	
		2000 -			2000 -			2000 -	
		2500			2500 -	1		2500 -	*
		3000			3000			3000	

l	Location	To Nearest Rebar								
х (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	а _{ст} (mm)	ε1	٤,0	€ _{suff.}	ε _m	W _{max} (mm)
0	0	0	79	20	69	-6.62E-04	0.00E+00	0.00E+00	-6.62E-04	uncracked
0	0	0	0	0	0	-6.62E-04	0.00E+00	0.00E+00	-6.62E-04	uncracked
0	0	0	0	0	0	-6.62E-04	0.00E+00	0.00E+00	-6.62E-04	uncracked
0	0	0	0	0	0	-6.62E-04	0.00E+00	0.00E+00	-6.62E-04	uncracked
0	0	0	0	0	0	-6.62E-04	0.00E+00	0.00E+00	-6.62E-04	uncracked
0	2500	0	2418	32	66	1.83E-03	0.00E+00	-4.22E-04	1.41E-03	0.270

*With Side Reinforcement T16-175 (Both Sides)

TITTLE : Crosshead P11A Type P1-C SLS1C1 (WITH SIDEBAR) 3 Notional Lanes CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL) *cl.4.2.2 Crack width check applies only for Load Combination 1 Design Parameters 40 N/mm² f cu= : Characteristic cube strength at 28 days 3.10E+07 kN/m² E_c= : Short term modulus of elasticity of concrete Φ= 2.00 : Creep coefficient 1.55E+07 kN/m² : Long term modulus of elasticity of concrete (allowed for creep effect) E_{cl}= 460 N/mm² : Steel Yield Strength $f_y =$ 2.00E+08 kN/m² Es = : Modulus of elasticity of rebar Section Geometry a= 12 90 : Long term ratio Es/EcL x (mm) -2000 0 2000 Neutral Axis (Elastic Analysis) Neutral Axis, $Yn = \Sigma(A^*Yi)/\Sigma A$ 500 ΣAc= 1,694,808 mm² : Area of concrete 1000 478,819 mm² ΣAs= : Transformed area of rebar y (mm) 2,173,627 mm² ΣA= : Gross area 1500 Err(x)=0.0 : $Err(Yn) = \Sigma(A^*Yi) \cdot Yn^*\Sigma A$ RE_ITERATE 2000 Yn= 677.92 mm Crack Width Calculation (BS 5400, cl. 5.8.8.2) 3000 -P g = 0 kN : Permanent Axial Force; (-) compression $M_g =$ 12391 kN-m : Permanent moment $M_q =$ 7134 kN-m : Live load moment 19525 kN-m M _s = : Applied SLS moment h= 2500 mm : Overall depth of section C nom= 35 mm : Nominal concrete clear cover as per BS5400, Part 4 -table (13) a_{cr} = 66 mm : Distance from the point considered (x,y) to the surface of the nearest rebar 1.33E-03 ε_m = : Average strain at point considered ε0 = 0.00E+00 : Initial strain due to axial load -4.36E-04 : Strain due to tension stiffening effect E_{stiff} = 4.24E-01 (1-Mq/Mg) = Rebar Location Rebar Stress Strain x (mm) 0.002 8 0.003 -0.001 0.002 0.003 8 0.00 8 8 8 8 20 ŝ 8 -2000 n 2000 . rebar 500 500 concrete 500

1000

1500

2000

2500

3000 -

(mm)

					,					
Location		To	Nearest Rel	bar						
х (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε ₁	٤0	[€] suff.	ε _m	W _{max} (mm)
0	0	0	79	20	69	-6.58E-04	0.00E+00	0.00E+00	-6.58E-04	uncracked
0	0	0	0	0	0	-6.58E-04	0.00E+00	0.00E+00	-6.58E-04	uncracked
0	0	0	0	0	0	-6.58E-04	0.00E+00	0.00E+00	-6.58E-04	uncracked
0	0	0	0	0	0	-6.58E-04	0.00E+00	0.00E+00	-6.58E-04	uncracked
0	0	0	0	0	0	-6.58E-04	0.00E+00	0.00E+00	-6.58E-04	uncracked
0	2500	0	2418	32	66	1.77E-03	0.00E+00	-4.36E-04	1.33E-03	0.255

1000

1500

2000

3000 -

y (mm)

1000

1500

2000

3000

(mm)

7.2.3.2 BD 37/88 (2 Notional Lanes)

* Without Side Reinforcement

TITTLE : Crosshead P11A Type P1-C SLS1C1 (WITHOUT SIDEBAR) 2 Notional Lanes

CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL)

	OTH DESIGN TO B	33400-4.1330		1.4.2.2 Crack width check applies only for Loa	d Combinat	tion 1					
esign Par	ameters			a.4.2.2 Grack wider crieck applies only for Eda	u combina						
		N/mm ²									
f _{cu} =	40 3.10E+07	-		: Characteristic cube strength at 28 days							
Ε _c = Φ=	3.10E+07 2.00	KIN/M		: Short term modulus of elasticity of concrete : Creep coefficient							
$E_{cl} =$	1.55E+07	kN/m ²		Long term modulus of elasticity of	of concr	oto (all	owed for creen off	act)			
L CI -	1.552.107			Long term modulus of elasticity o	n conci	ere (un	owed for creep en				
$f_y =$	460	N/mm ²	1	Steel Yield Strength							
Es =	2.00E+08	kN/m ²	1	Modulus of elasticity of rebar			Section Geometry				
α=	12.90		21	Long term ratio Es/EcL							
					-2	000	x (mm) 0	2000			
eutral Axi	s (Elastic Analysis	;)				<u> </u>	0				
		-									
eutral Axi	s, $Yn = \Sigma(A^*Yi)/\Sigma A$					_	500 -				
ΣAc=	1,661,123	2									
ZAC= ΣAs=	421,744	-		Area of concrete Transformed area of rebar			1000 -				
ΣA3=	2,082,867	-		Gross area	y (mm)		1500 -				
Err(x) =	2,002,007			Err(Yn)= $\Sigma(A^*Yi)$ -Yn* ΣA	y (r						
	010	RE_ITE	RATE				2000 -				
Yn=	664.45	mm									
							2500				
	h Calaviatian (DC	5400 -L 5 8 6	1.21								
rack widt	h Calculation (BS	5400, cl. 5.8.8	<u>(, Z)</u>				3000 -				
$P_q =$	0	kN	:1	Permanent Axial Force; (-) compressi	on						
$M_q =$	12391	kN-m		: Permanent moment							
$M_q =$	5275	kN-m	21	: Live load moment							
M _s =	17666			: Applied SLS moment							
h=	2500			Overall depth of section							
C nom=		mm		Nominal concrete clear cover as per E							
a _{cr} =	1.02E-03	mm		Distance from the point considered (x Average strain at point considered	(,y) to the	surrace	e of the hearest repar				
ε _m = ε _o =	0.00E+00			Initial strain due to axial load							
ε _{stm} =	-6.31E-04			Strain due to tension stiffening effect							
Mq/Mg) =	5.74E-01			2							
	Rebar Location			Strain			Rebar Stress				
	x (mm)		0.004	-0.001 -0.001 0.002 0.003 0.003	8 8	8	8 0 0	0 0			
-2000	0	2000	9 9	9 9 0 0 0 0 0	¥ õ	ğ	- 100 -	300			
	Ť			X A rebar			• [
	500 -			500 concrete			500 -				
	1000 -			1000 -			1000 -				
	1000		-				1000				
î	1500 -		v (mm)	1500 -			1500 -				
	1000		ž		2						
	2000 -			2000 -			2000 -				
	2000 -			2000 -			2000				
				1				•			
	2500			0500			2500				
	2600			2500 -			2500 -	•			
	2600			2500 - 3000 J			2500 -	•			

Location		To Nearest Rebar								
х (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε1	٤,	ε _{suff.}	ε _m	W _{max} (mm)
0	0	0	79	20	69	-5.99E-04	0.00E+00	0.00E+00	-5.99E-04	uncracked
0	0	0	0	0	0	-5.99E-04	0.00E+00	0.00E+00	-5.99E-04	uncracked
0	0	0	0	0	0	-5.99E-04	0.00E+00	0.00E+00	-5.99E-04	uncracked
0	0	0	0	0	0	-5.99E-04	0.00E+00	0.00E+00	-5.99E-04	uncracked
0	0	0	0	0	0	-5.99E-04	0.00E+00	0.00E+00	-5.99E-04	uncracked
0	2500	0	2418	32	66	1.65E-03	0.00E+00	-6.31E-04	1.02E-03	0.196

Private & Confidential

*With Side Reinforcement T16-175 (Both Sides)

TITTLE : Crosshead P11A Type P1-C SLS1C1 (WITH SIDEBAR) 2 Notional Lanes

CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL)

CRACK WIDTH	DESIGN TO BS	5400-4:1990	(AXIAL & FLEXURAL)								
			*cl.4.2.2 Crack width check applies only for Load	Combination 1							
Design Parame	eters .										
f _{cu} =	40	N/mm ²	: Characteristic cube strength at 28	days							
E c =	3.10E+07	kN/m ²	: Short term modulus of elasticity of	-							
Φ=	2.00		: Creep coefficient	oonorete							
E _{cl} =	1.55E+07	kN/m ²	: Long term modulus of elasticity of concrete (allowed for creep effect)								
			,								
fy=	460	N/mm ²	: Steel Yield Strength								
Es =	2.00E+08	kN/m ²	: Modulus of elasticity of rebar	: Modulus of elasticity of rebar							
a=	12.90		: Long term ratio Es/EcL		Section Geometry						
				0000	x (mm)	0000					
				-2000	0	2000					
leutral Axis (E	lastic Analysis)	2			Ŭ						
leutral Axis, Y	$n = \Sigma (A * Yi) / \Sigma A$				500 -						
icuta arrivine, i											
ΣAc=	1,694,808	mm ²	: Area of concrete		1000 -	_					
ΣAs=	478,819	mm ²	: Transformed area of rebar	-							
Σ Α=	2,173,627	mm ²	: Gross area	y (mm)	1500 -	_					
Err(x) =	0.0		: $Err(Yn) = \Sigma(A^*Yi) \cdot Yn^*\Sigma A$	y (
		RE_ITE	RATE		2000 -						
Yn=	677.92	mm									
					2500						
Crack Width C	alculation (BS 5	400, cl. 5.8.8	2)		3000						
$P_q =$	0	kN	: Permanent Axial Force; (-) compression	, ,							
$M_q =$	12391		: Permanent moment								
$M_{q} =$	5275		: Live load moment								
M _s =	17666	kN-m	: Applied SLS moment								
h=	2500 1	mm	: Overall depth of section								
C nom=	35 1	mm	: Nominal concrete clear cover as per BS	: Nominal concrete clear cover as per BS5400, Part 4 -table (13)							
a _{cr} =	66 1	mm	: Distance from the point considered (x,)	: Distance from the point considered (x,y) to the surface of the nearest rebar							
ε _m =	9.48E-04		: Average strain at point considered								
ε ₀ =	0.00E+00		: Initial strain due to axial load	2							
ε _{stiff.} =	-6.53E-04		: Strain due to tension stiffening effect								
1-Mq/Mg) =	5.74E-01										
	Rebar Location		Strain		Rebar Stress						
	x (mm)		-0.004 -0.003 -0.001 -0.001 0.001 0.002 0.003	8 8 8	8 0 0	0 0					
-2000	0	2000	-0.00 -0.000 -0.000 -0.000 -0.000 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0	400 200 200	- 100 - 200 - 200	300					
	°†		¥		•						
	t		t rebar		^						
	500		500 concrete		500 -						

		3000]			3000			3000]				
	1	Location	To	Nearest Rei	bar	T						
	x (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε,	٤,0	E suff.	ε _m	W _{max} (mm)	
	0	0	0	79	20	69	-5.95E-04	0.00E+00	0.00E+00	-5.95E-04	uncracked	
	0	0	0	0	0	0	-5.95E-04	0.00E+00	0.00E+00	-5.95E-04	uncracked	
	0	0	0	0	0	0	-5.95E-04	0.00E+00	0.00E+00	-5.95E-04	uncracked	
	0	0	0	0	0	0	-5.95E-04	0.00E+00	0.00E+00	-5.95E-04	uncracked	
	0	0	0	0	0	0	-5.95E-04	0.00E+00	0.00E+00	-5.95E-04	uncracked	
	0	2500	0	2418	32	66	1.60E-03	0.00E+00	-6.53E-04	9.48E-04	0.181	

1000

1500

2000

2500

y (mm)

y (mm)

1000

1500

2000 2500

1000

1500

2000

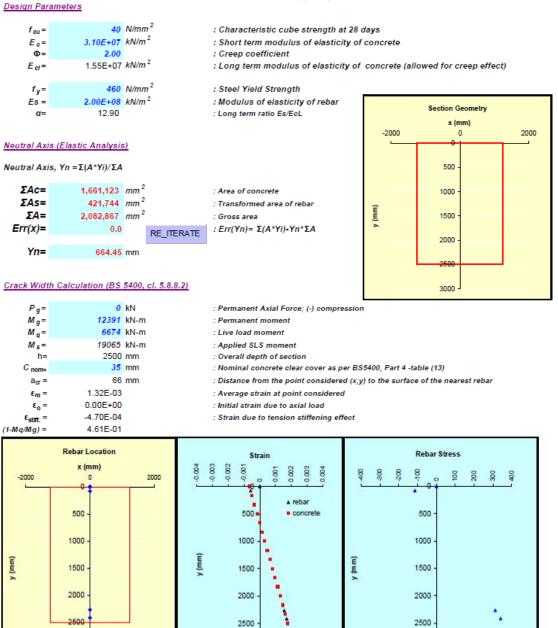
2600

3000

y (mm)

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Final Report

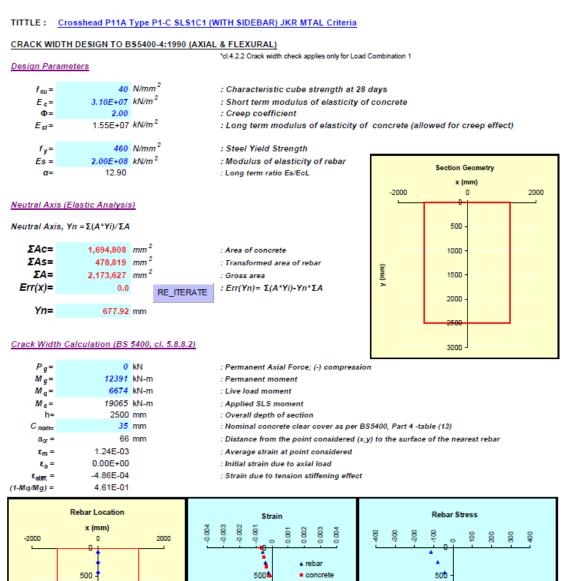

7.2.3.3 JKR MTAL (3 Notional Lanes)

* Without Side Reinforcement

TITTLE : Crosshead P11A Type P1-C SLS1C1 (WITHOUT SIDEBAR) JKR MTAL Criteria

CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL)

*cl.4.2.2 Crack width check applies only for Load Combination 1


Lo	ocation	To	Nearest Re	bar						
x (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε,	٤0	E SUIT.	ε _m	W _{max} (mm)
0	0	0	79	20	69	-6.46E-04	0.00E+00	0.00E+00	-6.46E-04	uncracked
0	0	0	0	0	0	-6.46E-04	0.00E+00	0.00E+00	-6.46E-04	uncracked
0	0	0	0	0	0	-6.46E-04	0.00E+00	0.00E+00	-6.46E-04	uncracked
0	0	0	0	0	0	-6.46E-04	0.00E+00	0.00E+00	-6.46E-04	uncracked
0	0	0	0	0	0	-6.46E-04	0.00E+00	0.00E+00	-6.46E-04	uncracked
0	2500	0	2418	32	66	1.79E-03	0.00E+00	-4.70E-04	1.32E-03	0.252

3000

3000 -

3000

*With Side Reinforcement T16-175 (Both Sides)

1000

1500

2000

2500

3000 -

1

y (mm)

Location To Nearest Rebar										
х (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε ₁	٤,	E suff.	ε _m	W _{max} (mm)
0	0	0	79	20	69	-6.43E-04	0.00E+00	0.00E+00	-6.43E-04	uncracked
0	0	0	0	0	0	-6.43E-04	0.00E+00	0.00E+00	-6.43E-04	uncracked
0	0	0	0	0	0	-6.43E-04	0.00E+00	0.00E+00	-6.43E-04	uncracked
0	0	0	0	0	0	-6.43E-04	0.00E+00	0.00E+00	-6.43E-04	uncracked
0	0	0	0	0	0	-6.43E-04	0.00E+00	0.00E+00	-6.43E-04	uncracked
0	2500	0	2418	32	66	1.73E-03	0.00E+00	-4.86E-04	1.24E-03	0.238

1000

1500

2000

2500

3000 -

y (mm)

1000

1500

2000

0600

3000

y (mm)

7.3. Strut and Tie Analysis (STM) for Pier P-11A Crosshead

The STM model is based on BD 37/88 three (3) notional lanes loading criteria for Ultimate Limit State under Load Combination (1).

Summary of maximum bearing force based on BD 37/88 (3 Notional Lanes)

										Combir	nation 1	
No.	Load Case	N_1 (kN)	N ₂ (kN)	N ₃ (kN)	N ₄ (kN)	N_5 (kN)	N ₆ (kN)	N ₇ (kN)	N_8 (kN)	γ	fL	γ _{f3}
										SLS	ULS	ULS
1	SW	310	358	449	347	364	370	375	300	1.00	1.15	1.10
2	Deck Slab	124	113	140	115	119	121	121	115	1.00	1.15	1.10
3	SDL (Parapet)	270	-38	43	38	40	37	14	145	1.00	1.20	1.10
4	Premix	36	33	41	34	35	36	36	34	1.20	1.75	1.10
5	HA+KEL	172	386	301	389	358	267	468	232	1.20	1.50	1.10
6	HA+HB30	276	247	279	330	399	358	418	181	1.10	1.30	1.10
7	HB45	-129	84	119	111	266	324	304	472	1.10	1.30	1.10
8	SV20	115	366	552	560	568	439	390	15	1.10	1.30	1.10

SLS Design to Load Combination 1

Case #	Load Combination	N ₁ (kN)	N_2 (kN)	N ₃ (kN)	N_4 (kN)	N ₅ (kN)	$N_6 (kN)$	N ₇ (kN)	N ₈ (kN)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	955	936	1043	1007	995	890	1115	880
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	1051	744	988	903	1004	964	1014	800
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	606	565	813	662	857	926	888	1120
SLS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	875	875	1289	1156	1190	1052	982	618

ULS Design to Load Combination 1

Case #	Load Combination	N ₁ (kN)	N_2 (kN)	N ₃ (kN)	N₄ (kN)	N₅ (kN)	N ₆ (kN)	N ₇ (kN)	N ₈ (kN)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	1260	1246	1378	1341	1323	1178	1487	1165
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	1370	963	1280	1170	1302	1249	1314	1041
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	791	730	1052	858	1111	1201	1150	1457
ULS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	1141	1133	1670	1499	1543	1365	1273	804

Note : N_8 is located at the tip of the cantilever (furthest from the pier)

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Final Report

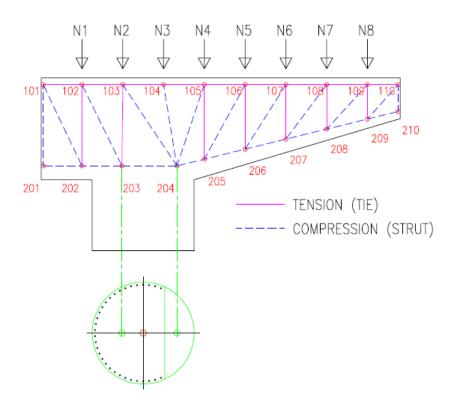


Figure 32. P-11A STM Analysis Model

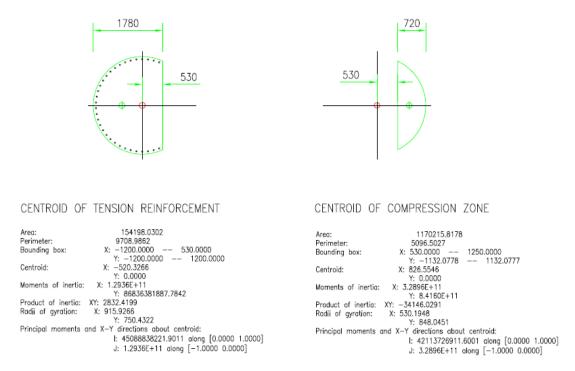


Figure 33. Pier P-11A Tension and Compression Zone based on ULS1C1

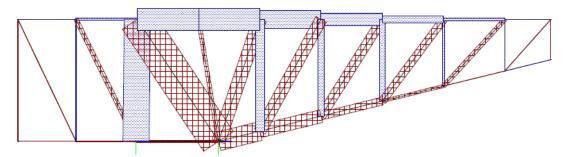


Figure 34. *P-11A STM Axial Force Diagram (Blue = Tension, Red = Compression)*

The support for the STM model is modelled based on the centroid of the tension reinforcement zone and concrete compression zone as shown in Figure 33.

The tie tension forces obtained from the analysis are checked as follows;

Top Tension Tie (104-105) Check

 $fy = 460 \quad Mpa \\ As,prov = 27,336 \quad mm^2 \quad (2 \times 17T32 \text{ top reinforcement}) \\ Tu = 9,190 \quad kN \\ As,req = Tu/0.87f_y \\ = 22,964 \quad mm^2 \\ Remarks : As,prov > As,req \quad O.K!$

Vertical Tension Tie (103-203) Check

fy = 460 MpaAs,prov = 25,728 mm² (32T3 <u>14,311 mm²</u> (3T16 <u>40,039 mm²</u> Tu = 10,685 kN As,req = 26,700 mm² Remarks : As,prov > As,req O.K!

(32T32 column main reinforcement inside 1780mm tension zone) (3T16-150 links in 1780mm tension zone)

Vertical Te	Vertical Tension Tie (105-205) Check									
	460 0 8,040 8,040	Mpa mm ² _mm ² _mm ²	(3T16-150 links in 1000mm tension zone)							
	3,666 9,161 As,prov <		FAILED!							

The check shows that the top reinforcement and column reinforcement in the tension zone provided are sufficient to cater for the tension forces. However, the shear links provided is insufficient to resist the tension forces.

The bottom compression strut forces obtained from the analysis are checked as follows;

Bottom Compression Strut (204-205) Check

fcu = 40 Mpa b = 2,500 mm (Crosshead width) 680 d = mm (Crosshead compression zone) Su = 7,673 kΝ 4.51 σ= Mpa Remarks : < 0.4fcu O.K

Based on the check, the concrete stress calculated is 4.51 N/mm^2 , which is less than $0.4f_{cu}$; 16.0 N/mm². Thus, the bottom strut concrete compression stress is within the concrete strength limit.

The diagonal compression strut is checked as follows;

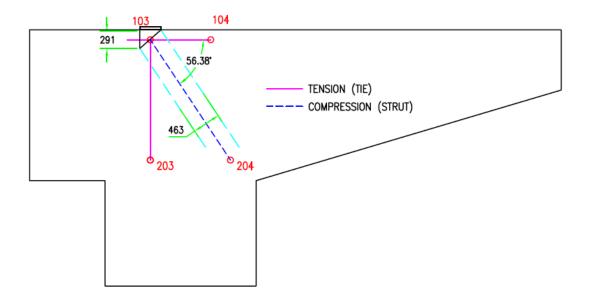


Figure 35. P-11A diagonal strut check

Diagonal Strut (103-204) Check based on ACI

Effective Compressive Strength for Node 103

β _n =	0.6	(CTT)	
f' _c =	40	Mpa	(cube strength)
	4,640	psi	
f _{ce(103)} =	$0.85 \beta_n f'_c$		(eq. A-8)
=	2.37	ksi	
=	16.32	Мра	

Calculate Width of Tie 103-104

φ =	0.85		(cl. C.9.3.2.6)
b _w =	2,500	mm	
	98.5	in.	
F =	8,937	kN	
	2,009	k	
w ₍₁₀₃₋₁₀₄₎ =	F / $\phi(b_w)f_{cu}$		
=	10.1	in.	
=	257.6	mm	

Private & Confidential Prepared by Kumpulan **IKRAM** Sdn Bhd

Effective Compr	essive Sti	rength fo	or Strut 103-204	_	
β _s =	1.00			(cl. A.3.2.1)	
f' _c =	40	Мра		(cube streng	th)
	4,640	psi		(cylinder stre	ngth)
f _{ce(103-204)} =	0.85β _s f' _c			(eq. A-3)	
=	3.94	ksi			
=	27.20	Мра			
Check Strut 103-204	Capacity				
₩ _{\$(103-204)} =	452 m 17.8 in	ım ı.	(me	asured from dra	awing)
$\phi F_{ns(103\text{-}204)} = \phi f_0$			(eq.	A-2)	
	5,876 k			Cu = 14.50	_
=	26,137 kl O.K!	IN	>	Su = 14,53	2 kN

Based on the checking, the diagonal compression strut width is measured to be 463 mm. The maximum ultimate compression strut force from the analysis is 14,532 kN, which is lower than the calculated capacity of 26,137 kN. Therefore, the diagonal compression strut capacity satisfies the ultimate limit force from the analysis.

Compression

7.4. Finite Element Analysis (FEM) for P-11A

The FEM model was based on BD 37/88 3 notional lanes loading criteria for Serviceability Limit State Load Combination 1.

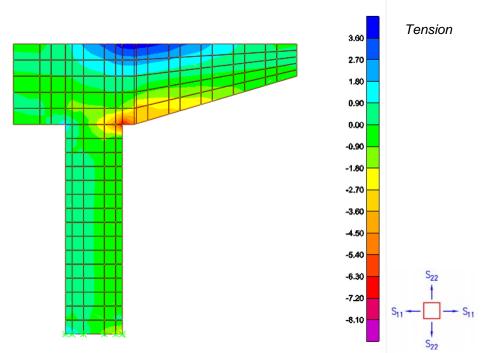


Figure 36. P-11A S11 stress diagram

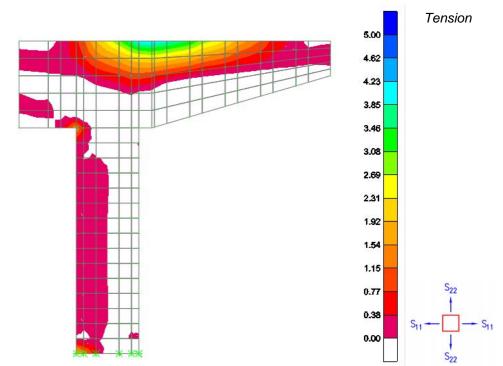


Figure 37. P-11A S11 tension stress diagram

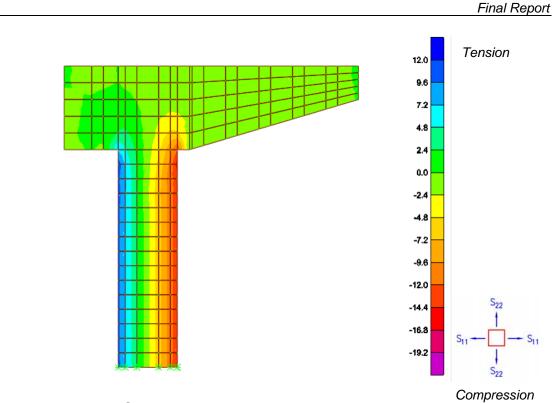


Figure 38. P-11A S22 stress diagram

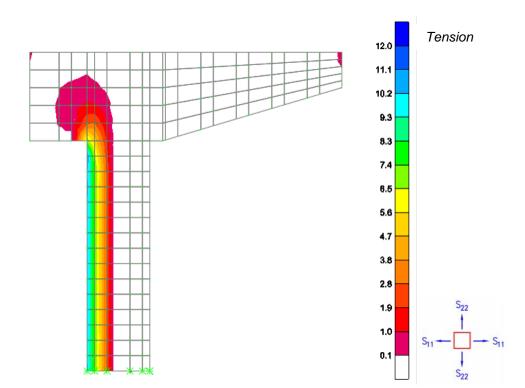
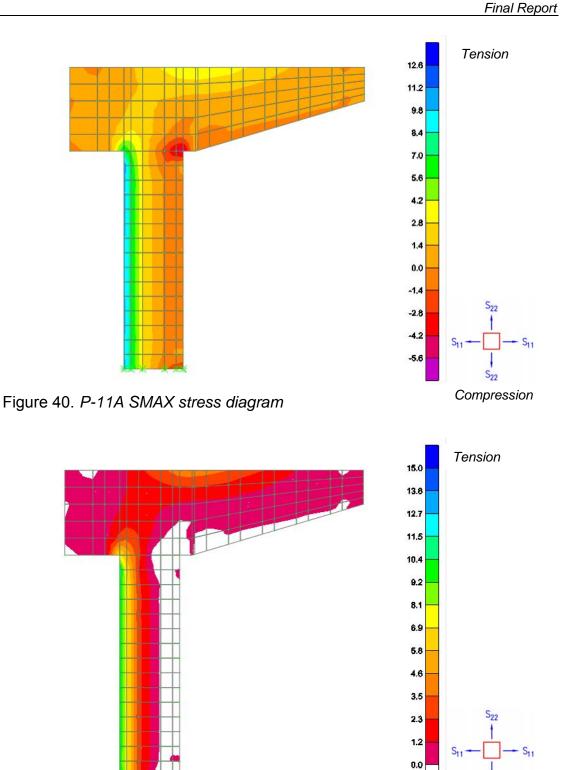



Figure 39. P-11A S22 tension stress diagram

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Figure 41. P-11A SMAX tension stress diagram

S22

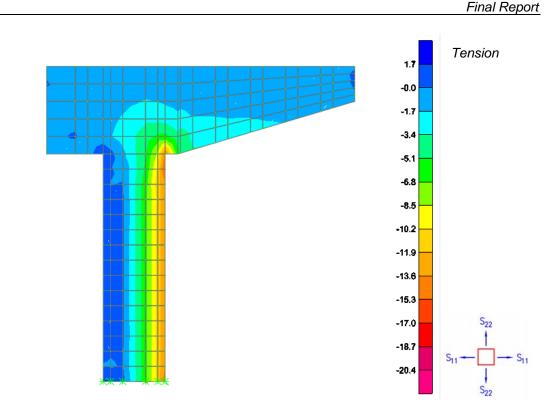


Figure 42. P-11A SMIN tension stress diagram

Compression

Based on Figure 39, it is shown that the S22 tension stress extends approximately 2.0m from the top of the pier into the crosshead. Therefore, it would be suggested that the pier main reinforcement should be extended up for a minimum of 0.8 depth of the crosshead followed by tension anchorage length to cater for tension of the reinforcement bars.

7.5. Summary of Design Review for Pier P-11A

(a) The pier column ultimate capacity (ULS) and crack width (SLS) check is summarized as below.

Table 35. P-11A – Summar	of nier LILS moment canacit	hz
Table 55. F-TTA – Summar	of pier one moment capacit	ιy

	Ultimate Moment Capacity (kN.m)					
Pier Type	3 Notional Lanes (BD37/88)	2 Notional Lanes (BD37/88)	3 Notional Lanes (JKR MTAL)			
P1-C (P-11A)	O.K	O.K	O.K			

Table 36. P-11A – Summary of pier SLS crack width

	Crack Width (mm)					
Pier Type	3 Notional Lanes	2 Notional Lanes	3 Notional Lanes			
	(BD37/88)	(BD37/88)	(JKR MTAL)			
P1-C (P-11A)	0.416	0.370	0.398			

Based on the checking, the existing pier column design satisfied the ULS capacity. However, the crack widths computed are more than 0.250mm which exceeded the SLS criteria.

(b) The crosshead ultimate moment capacity (ULS) check is summarized as below.

Table 37. P-11A – Summary of crosshead ULS moment capacity

	Ult. Moment C	apacity (kN.m)	Maximum ULS	Capacity	
Loading Criteria	Without Sidebar	With Sidebar	Moment (kN.m)	Ratio	
BD 37/88 (3 Notional Lanes)	24,439	26,069	25,805	1.06	
BD 37/88 (2 Notional Lanes)	24,439	26,069	24,442	1.00	
JKR MTAL (3 Notional Lanes)	24,439	26,069	25,173	1.03	

*Capacity ratio is based on Maximum ULS Moment / Ult. Moment Capacity (without sidebar)

The checking shows that the existing design of crosshead did not meet the ULS moment capacity for BD 37/88 (3 Notional Lanes) and JKR MTAL (3 Notional Lanes) loading criteria when analyzed without the side reinforcement. When side reinforcement is taken into consideration, the crosshead moment capacity is adequate for all three (3) loading cases.

(c) The crosshead ultimate shear capacity (ULS) check is summarized as below.

Table 38. P-11A – Summary of crosshead ULS shear capacity

BD 37/88	(3 Notional Lanes)	@ 2.5m Depth
00 31/00	(3 Nouonai Lanes)	@ Z.om Deput

DD erree (erreachai zanee) @ zien Depar						
Asv/sv _{req'd}	Asv/sv prov	Capacity Ratio				
7.72	8.04	0.96				
7.28	8.04	0.90				
6.96	8.04	0.87				
7.71	8.04	0.96				
	Asv/sv _{req'd} 7.72 7.28 6.96	Asv/sv regid Asv/sv prov 7.72 8.04 7.28 8.04 6.96 8.04				

*Capacity ratio is based on Asv/sv regid / Asv/sv prov

BD 37/88 (2 Notional Lanes) @ 2.5m Depth

Load Case	Asv/sv regid	Asv/sv prov	Capacity Ratio
ULS1C1	6.90	8.04	0.86
ULS2C1	6.64	8.04	0.83
ULS3C1	6.94	8.04	0.86
ULS4C1	7.70	8.04	0.96

*Capacity ratio is based on Asv/sv regid / Asv/sv prov

JKR MTAL @ 2.5m Depth

Load Case	Asv/sv regid	Asv/sv prov	Capacity Ratio			
ULS1C1	7.57	8.04	0.94			
to an it with it have done to have been been been been been been been be						

*Capacity ratio is based on Asv/sv _{reg'd} / Asv/sv _{prov}

The checking shows that the existing shear capacity design of the crosshead is adequate at ULS.

(d) The crosshead crack width (SLS) check is summarized as below.

Table 39. P-11A – Summary of crosshead SLS crack width

	3 Notional Lanes (BD 37/88)				
Crosshead Type	Crack Width (mm)				
Crossnead Type	Without Sidebar	With Sidebar			
P1-C (P-11A)	0.270	0.255			

	2 Notional Lanes (BD 37/88)				
Crosshead Type	Crack Width (mm)				
Crossnead Type	Without Sidebar	With Sidebar			
P1-C (P-11A)	0.196	0.181			

	3 Notional Lanes (JKR MTAL)				
Crosshead Type	Crack Width (mm)				
Crossnead Type	Without Sidebar	With Sidebar			
P1-C (P-11A)	0.252	0.238			

Private & Confidential

The checking shows that the existing design of the crosshead did not meet the SLS crack width criteria of 0.250mm for BD 37/88 (3 Notional Lanes) loading criteria. When BD 37/88 (3 Notional Lanes) loading criteria is checked against the existing design, the calculated crack width satisfies the allowable limit of 0.250mm. However, the crack width calculated under JKR MTAL loading criteria only satisfies the 0.250mm limit criteria when side reinforcement is taken into consideration.

(e) The following table shows the comparison of ULS design between conventional beam theory and STM.

Element Force	Conventional Beam Theory	STM
Bending Moment, As _{req'd}	2 x 17T32	2 x 15T32
Shear Force, Asv _{reg'd}	3T16-150	4T16-150

Table 40. P-11A – Conventional beam theory vs. STM

Based on the comparison, it is found that the reinforcement required the resist the bending moment by using STM method is less than the conventional beam theory method. In the other hand, STM design method requires more shear links compared to conventional beam theory design.

 (f) Based on Figure (42), the pier column main vertical reinforcement of T32-150 was terminated near top of crosshead without 90° anchorage bent.

From Figure (31) of the STM analysis, the vertical ultimate tension of 10,685kN on the tension tie member (Node 103 to 203) extends from the bottom compression strut to the top tension tie. Although, the reinforcement provided in the pier column tension zone of 32T32 and 3T16-150 of crosshead links is sufficient to resist the tension tie force, but they don't have sufficient anchorage length into the nodal zone to satisfy STM design philosophy.

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

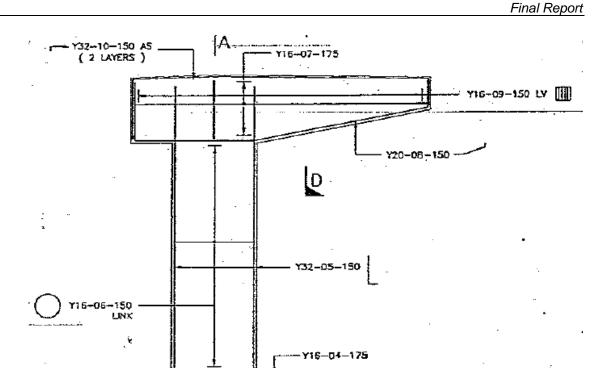


Figure 43. P-11A as-built detailing

Moreover, from Figure (38) of the FEM analysis, the crosshead S22 tension stress is found to extend into crosshead about 2.0m from top of pier column (i.e. soffit of crosshead). Therefore, it is essential that the main column reinforcement should extend further up and followed by a bend for another minimum tension anchorage length beyond the tension zone.

(g) It is found that the conventional method of analysis does not capture the tensile stress in the crosshead as compared to STM or FEM analysis. This is due to the conventional method assumes the crosshead and pier column as frame elements connected at the centroid of the respected elements. Therefore, it is recommended to perform STM and FEM analysis to investigate and capture the behaviour of deep crosshead.

8. DESIGN REVIEW FOR PIER P-25 (TYPE P1-A)

From the 3D analysis, the load effects under each load case can be obtained for P-25.

8.1. Pier Column Check for Pier P-25

The member forces for pier column are presented below for various load combinations. The design checks for pier column members under ULS and SLS are performed.

8.1.1 Analysis Results for Pier P-25 Column

The maximum design forces at pier column base are tabulated.

8.1.1.1 BD 37/88 (3 Notional Lanes)

				Combination 1		
No.	Load Case	N (kN)	M (kN.m)	γfL		γ _{f3}
				SLS	ULS	ULS
1	SW	11789	0	1.00	1.15	1.10
2	Deck Slab	2092	0	1.00	1.15	1.10
3	SDL (Parapet)	1235	0	1.00	1.20	1.10
4	Premix	616	0	1.20	1.75	1.10
5	HA+KEL (1 CARRIAGEWAY)	2558	-11025	1.20	1.50	1.10
6	HA+KEL (2 CARRIAGEWAY)	5115	0	1.20	1.50	1.10
7	HA+HB30 (1 CARRIAGEWAY)	1889	-7833	1.10	1.30	1.10
8	HA+HB30 (2 CARRIAGEWAY)	3973	2380	1.10	1.30	1.10
9	HB45	1588	-9718	1.10	1.30	1.10
10	SV20	3145	-12579	1.10	1.30	1.10

Table 41. P-25 pier force - BD 37/88 (3 Notional Lanes)

*SW includes 12 nos. precast U (LHS), 14nos. precast M10, 2 nos. precast UM10 (RHS), diaphragms, crosshead and column

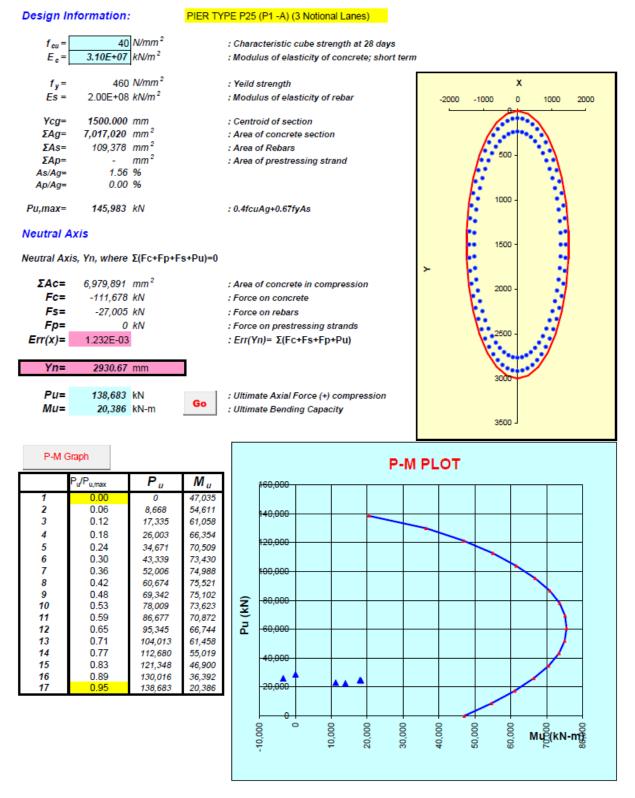
Table 42. P-25 pier force load combination – BD 37/88 (3 Notional Lanes)

SLS Design to Load Combination 1

	-					
Case #	Load Combination	N (kN)	M (kN.m)	N _g (kN)	M _g (kN.m)	M _q (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL 1 CARRIAGEWAY)	18925	-13230	15856	0	-13230
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL 2 CARRIAGEWAY)	21994	0	15856	0	0
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30 1 CARRIAGEWAY)	17934	-8617	15856	0	-8617
SLS4C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30 2 CARRIAGEWAY)	20226	2618	15856	0	2618
SLS5C1	(SW+Deck Slab+SDL+Premix) + (HB45)	17602	-10689	15856	0	-10689
SLS6C1	(SW+Deck Slab+SDL+Premix) + (SV20)	19315	-13837	15856	0	-13837

ULS Design to Load Combination 1

Case #	Load Combination	N (kN)	M (kN.m)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL 1 CARRIAGEWAY)	24596	-18191
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL 2 CARRIAGEWAY)	28817	0
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30 1 CARRIAGEWAY)	23078	-11202
ULS4C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30 2 CARRIAGEWAY)	26057	3404
ULS5C1	(SW+Deck Slab+SDL+Premix) + (HB45)	22647	-13896
ULS6C1	(SW+Deck Slab+SDL+Premix) + (SV20)	24874	-17988

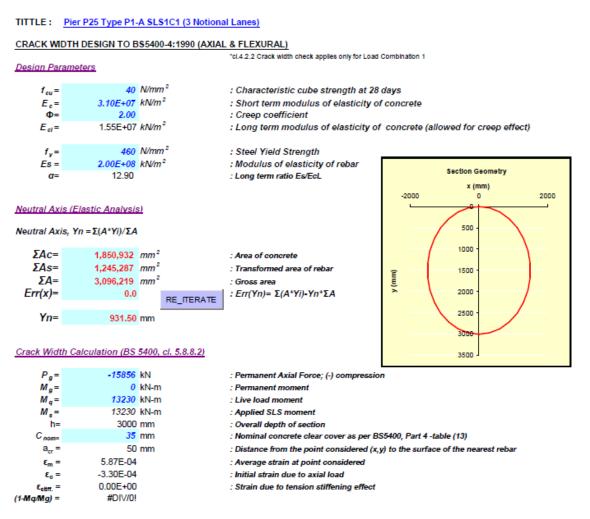

8.1.2 Sectional Capacity Check (ULS) for P-25 Column

The pier section capacity is calculated based on the following as-built information:-

• Ø3000mm, f_{cu}=40MPa, 120-T32

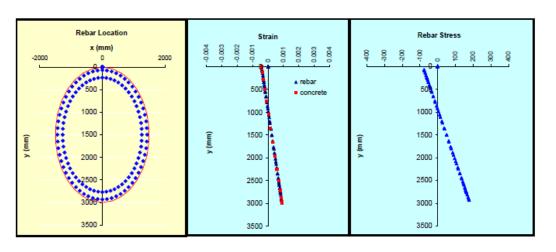
8.1.2.1 BD 37/88 (3 Notional Lanes)

Ultimate Section Capacity BS5400


The applied forces lies within the P-M interaction envelopes; hence the existing design of Pier P-25 is adequate at ULS.

8.1.3 Crack Width Check (SLS) for P-25 Column

The pier crack width is calculated based on the following parameter;


Ø3000mm, f_{cu}=40MPa, 120-T32

8.1.3.1 BD 37/88 (3 Notional Lanes)

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Final Report

l	Location	Το	Nearest Rel	bar						
x (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε ₁	٤0	€ ₅₀₁ 7.	ε _m	W _{max} (mm)
0	0	0	66	32	50	-0.00041	-3.30E-04	0	-7.44E-04	uncracked
0	0	0	0	0	0	-0.00041	-3.30E-04	0	-7.44E-04	uncracked
0	0	0	0	0	0	-0.00041	-3.30E-04	0	-7.44E-04	uncracked
0	0	0	0	0	0	-0.00041	-3.30E-04	0	-7.44E-04	uncracked
0	0	0	0	0	0	-0.00041	-3.30E-04	0	-7.44E-04	uncracked
0	3000	0	2934	32	50	0.000918	-3.30E-04	0.00E+00	5.87E-04	0.087

The computed crack width for Pier P-25 (Type P1-A) is summarized as follows:-

	Crack Width (mm)					
Pier Type	3 Notional	2 Notional	3 Notional			
тегтуре	Lanes	Lanes	Lanes (JKR			
	(BD37/88)	(BD37/88)	MTAL)			
P1-A (P-25)	0.087	-	-			

Table 43. Summary of P-25 SLS crack width check

Hence, the existing design of Pier P-25 is less than the allowable crack width of 0.25mm.

8.2. Crosshead Check for Pier P-25

The member forces of crosshead are presented below for various load combinations. The design checks for crosshead members under ULS and SLS are performed based on the following as-built drawing.

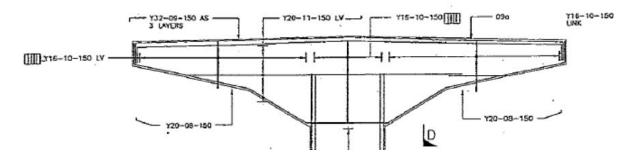


Figure 44. P-25 As-built crosshead reinforcement

8.2.1 Analysis Results for Pier P-25 Crosshead

The maximum design forces for crosshead are tabulated.

8.2.1.1 BD 37/88 (3 Notional Lanes)

		Manau	Combir	nation 1	
No.	Load Case	Mmax (kN.m)	γ	΄fL	γ _{f3}
		(((((SLS	ULS	ULS
1	SW	18509	1.00	1.15	1.10
2	Deck Slab	4325	1.00	1.15	1.10
3	SDL (Parapet)	3014	1.00	1.20	1.10
4	Premix	1273	1.20	1.75	1.10
5	HA+KEL	11041	1.20	1.50	1.10
6	HA+HB30	10191	1.10	1.30	1.10
7	HB45	9913	1.10	1.30	1.10
8	SV20	12675	1.10	1.30	1.10

Table 44. P-25 crosshead moment - BD 37/88 (3 Notional Lanes)

*SW includes 12 nos. precast U (LHS), 14nos. precast M10, 2 nos. precast UM10 (RHS), diaphragms and crosshead

Table 45. P-25 crosshead moment load combination – BD 37/88 (3 Notional Lanes) <u>SLS Design to Load Combination 1</u>

Case #	Load Combination	M (kN.m)	M_g (kN.m)	M _q (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	40624	27375	13249
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	38585	27375	11210
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	38279	27375	10904
SLS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	41317	27375	13942

ULS Design to Load Combination 1

Case #	Load Combination	M (kN.m)
	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	53530
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	49886
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	49488
ULS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	53438

Table 46. P-25 crosshead shear @ 2.0m depth – BD 37/88 (3 Notional Lanes)

			Combination 1		
No.	Load Case	Vmax (kN)	γ	ίL	γ _{f3}
			SLS	ULS	ULS
1	SW	-2191	1.00	1.15	1.10
2	Deck Slab	-535	1.00	1.15	1.10
3	SDL (Parapet)	-362	1.00	1.20	1.10
4	Premix	-158	1.20	1.75	1.10
5	HA+KEL	-1431	1.20	1.50	1.10
6	HA+HB30	-1028	1.10	1.30	1.10
7	HB45	-1412	1.10	1.30	1.10
8	SV20	-1641	1.10	1.30	1.10

*StaadPro member 6208

*SW includes 12 nos. precast U (LHS), 14nos. precast M10, 2 nos. precast UM10 (RHS), diaphragms and crosshead

Table 47. P-25 crosshead shear @ 2.0m depth load combination – BD 37/88 (3 Notional Lanes)

ULS Design to Load Combination 1

Case #	Load Combination	V (kN)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	-6590
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	-5700
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	-6249
ULS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	-6576

			Combir		
No.	Load Case	Vmax (kN)	γ	ίL	γ _{f3}
			SLS	ULS	ULS
1	SW	-3666	1.00	1.15	1.10
2	Deck Slab	-809	1.00	1.15	1.10
3	SDL	-447	1.00	1.20	1.10
4	Premix	-238	1.20	1.75	1.10
5	HA+KEL	-1977	1.20	1.50	1.10
6	HA+HB30	-1343	1.10	1.30	1.10
7	HB45	-1502	1.10	1.30	1.10
8	SV20	-2625	1.10	1.30	1.10

Table 48. P-25 crosshead shear	2 3.5m depth – BD 37/88	(3 Notional Lanes)

*StaadPro member 6213

*SW includes 12 nos. precast U (LHS), 14nos. precast M10, 2 nos. precast UM10 (RHS), diaphragms and crosshead

Table 49. P-25 crosshead shear @ 3.5m load combination – BD 37/88 (3 Notional Lanes)

ULS Design to Load Combination 1

Case #	Load Combination	V (kN)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	-9973
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	-8631
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	-8859
ULS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	-10465

8.2.2 Section Capacity Check (ULS) for Pier P-25 Crosshead

The crosshead is checked for its moment and shear capacity under Ultimate Limit State (ULS)

The crosshead section capacity is calculated based on the following as built information:-

Crosshead P-25 (Type P1-A)

- Width = 3000mm, Depth = 3500mm, f_{cu}=40MPa
- Top Reinforcement = T32-150 (3 layers)
- Bottom Reinforcement = T20 150 (1 layer)

8.2.2.1 Ultimate Moment Capacity Check for P-25 Crosshead

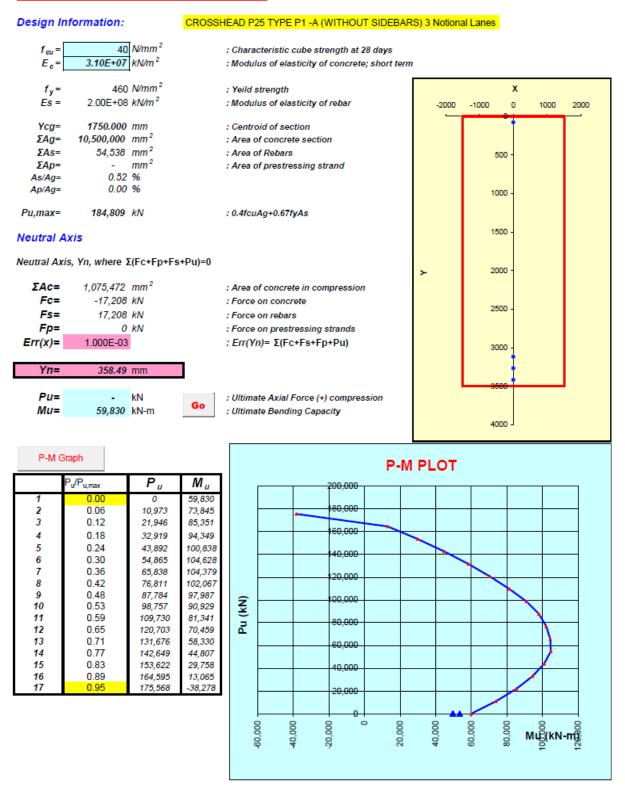
The computed crosshead ultimate moment capacity for Pier P-25 (Type P1-

A) is computed and compared with the ULS applied moments.

	Ult. Moment C	apacity (kN.m)	Maximum	Conocity			
Loading Criteria	Without Sidebar	With Sidebar	ULS Moment (kN.m)	Capacity Ratio			
BD 37/88 (3 Notional Lanes)	59,830	65,605	53,530	0.89			

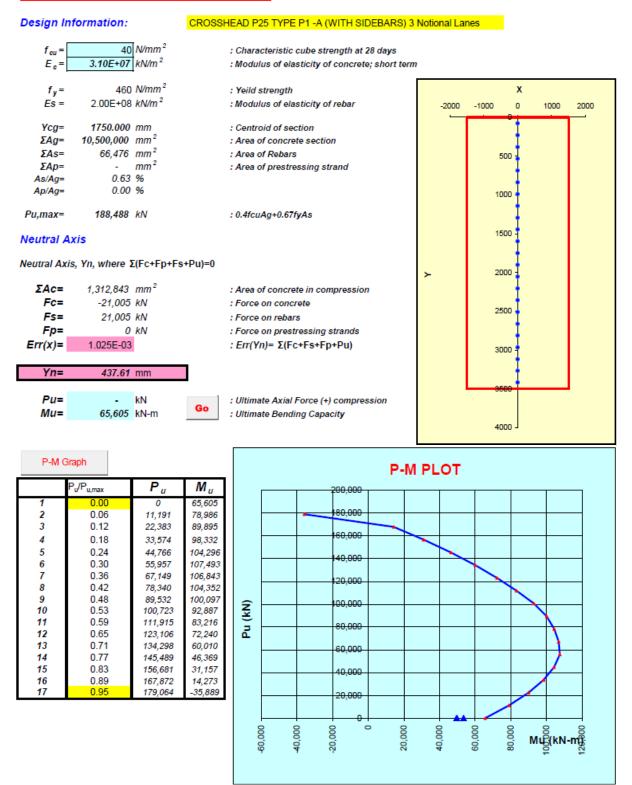
Table 50. Summary of P-25 crosshead ULS moment capacity check

*Capacity ratio is based on Maximum ULS Moment / Ult. Moment Capacity (without sidebar)


The applied moment lies within the P-M interaction envelope. Hence the existing crosshead design for P-25 (Type P1-A) is adequate at ULS.

The detailed computations of the sectional moment capacity are presented below.

8.2.2.1.1 BD 37/88 (3 Notional Lanes)


*Without Side Reinforcement

Ultimate Section Capacity BS5400

* With Side Reinforcement T20-150 (Both Sides)

Ultimate Section Capacity BS5400

8.2.2.2 Ultimate Shear Capacity Check for P-25 Crosshead

The crosshead ultimate shear link required for Pier P-25 (Type P1-A) is computed and compared to the shear link provided.

Table 51.	Summary o	of P-25 UL	S shear	force c	capacity	check @ 2.0)m
depth							

Load Case	Asv/sv regid	Asv/sv prov	Capacity Ratio
ULS1C1	8.46	8.04	1.05
ULS2C1	7.19	8.04	0.89
ULS3C1	7.98	8.04	0.99
ULS4C1	8.44	8.04	1.05

*Capacity ratio is based on Asv/sv regid / Asv/sv prov

Table 52. Summary of P-25 ULS shear force capacity check @ 3.5m depth

Load Case	Asv/sv _{req'd}	Asv/sv prov	Capacity Ratio
ULS1C1	7.60	8.04	0.94
ULS2C1	6.57	8.04	0.82
ULS3C1	6.74	8.04	0.84
ULS4C1	7.97	8.04	0.99

*Capacity ratio is based on Asv/sv regid / Asv/sv prov

Based on the checking, it is found that the shear link provided at the 2.0m depth crosshead section is marginally insufficient for load case ULS1C1 (HA+KEL) and ULS4C1 (SV20).

However, the shear link provided at the 3.5m depth crosshead section is sufficient to resist the ultimate shear force for all the load cases.

The detailed computations of the sectional shear capacities are presented as below.

8.2.2.1.1 BD 37/88 (3 Notional Lanes)

*ULS1C1 @ 2.0m Depth

Element ID = P-25 Crosshead (ULS1C1 - BD 37/88 3 Notional Lanes) @ 2.0m Depth

f _{cu} f _y b d	= = = =	40 460 3,000 1,752	N/mm ² N/mm ² mm mm			
V _{ult} V	= =	6,590 1.25	kN N/mm ²	Remarks :	0.К	
Depth Factor	·, ξ _s =	0.731				
A _s v _c	= =	48,240 0.72	mm ² N/mm ²	(3 layers of 20T32) ξ _s v _c	=	0.52
v	>	$\xi_{s}v_{c}$		25.0		
A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	=	8.46 8.04 Not Sufficie	nt!	(3T16-150)		

*ULS2C1 @ 2.0m Depth

Element ID = P-25 Crosshead (ULS2C1 - BD 37/88 3 Notional Lanes) @ 2.0m Depth f_{cu} = 40 N/mm² fy = 460 N/mm² b = 3,000 mm d 1,752 = mm V_{ult} 5,700 kΝ = = 1.08 N/mm² Remarks : O.K ٧ Depth Factor, ξ_s = 0.731 mm^2 48,240 (3 layers of 20T32) As = 0.72 N/mm² 0.52 ٧c = ξ_sv_c = ٧ > ξ_sv_c 7.19 A_{sv}/s_{v,reg'd} = A_{sv}/s_{v,prov} 8.04 (3T16-150) = Sufficient!

*ULS3C1 @ 2.0m Depth

Element ID = P-25 Crosshead (ULS3C1 - BD 37/88 3 Notional Lanes) @ 2.0m Depth

f _{cu}	=	40	N/mm ²			
f _y	=	460	N/mm ²			
b	=	3,000	mm			
d	=	1,752	mm			
V _{ult}	=	6,249	kN			
V	=	1.19	N/mm ²	Remarks :	0.К	
Depth Factor	r, ξ _s =	0.731				
As	=	48,240	mm ²	(3 layers of 20T32)		
Vc	=	0.72	N/mm ²	ξ _s v _c	=	0.52
V	>	$\xi_s v_c$				
A _{sv} /s _{v,req'd}	=	7.98				
A _{sv} /s _{v,prov}	=	8.04		(3T16-150)		
		Sufficient	1			

*ULS4C1 @ 2.0m Depth

Element ID = P-25 Crosshead (ULS4C1 - SV20) @ 2.0m Depth

f _{cu} f _y b d	= = =	40 460 3,000 1,752	N/mm ² N/mm ² mm mm			
V _{ult}	= =		kN N/mm ²	Remarks :	0.К	
Depth Facto	or, ξ _s =	0.731				
As	=	48,240		(3 layers of 20T32)		
Vc	=	0.72	N/mm ²	ξ _s v _c	=	0.52
v	>	ξsvc				
A _{sv} /s _{v,req'd}	=	8.44				
A _{sv} ∕s _{v,req'd} A _{sv} ∕s _{v,prov}	=	8.04		(3T16-150)		
		Not Sufficie	nt!			

*ULS1C1 @ 3.5m Depth

Element ID = P-25 Crosshead (ULS1C1 - BD 37/88 3 Notional Lanes) @ 3.5m Depth

f _{cu} f _y b d	= = =	40 460 3,000 3,252	N/mm ² N/mm ² mm mm			
V _{ult}	=	9,973	kN			
v	=	1.02	N/mm ²	Remarks :	0.К	
Depth Factor	, ξ _s =	0.700				
As	=	48,240	mm ²	(3 layers 20T32)		
Vc	=	0.58	N/mm ²	ξ _s v _c	=	0.41
v	>	$\xi_{s}v_{c}$				
A _{sv} /s _{v,req'd}	=	7.60				
A _{sv} /s _{v,prov}	=	8.04		(3T16-150)		
		Sufficient	1			

*ULS2C1 @ 3.5m Depth

Element ID = P-25 Crosshead (ULS2C1 - BD 37/88 3 Notional Lanes) @ 3.5m Depth

f _{cu} = f _y = b = d =	40 460 3,000 3,252	N/mm ² N/mm ² mm mm			
V _{ult} = ∨ =	8,631 0.88	kN N/mm ²	Remarks :	0.К	
Depth Factor, ξ_s =	0.700				
A _s =	48,240	mm ²	(3 layers 20T32)		
v _c =	0.58	N/mm ²	ξ _s v _c	=	0.41
v >	ξ _s v _c				
A _{sv} /s _{v,req'd} = A _{sv} /s _{v,prov} =	6.57				
A _{sv} /s _{v,prov} =	8.04 Sufficient	1	(3T16-150)		

*ULS3C1 @ 3.5m Depth

Element ID = P-25 Crosshead (ULS3C1 - BD 37/88 3 Notional Lanes) @ 3.5m Depth

f _{cu} f _y b d	= = =	40 460 3,000 3,252	N/mm ² N/mm ² mm mm			
V _{ult} V	= =	8,859 0.91	kN N/mm ²	Remarks :	0.К	
Depth Factor	r, ξ _s =	0.700				
A _s Vc V A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	= > =	48,240 0.58 ξ _s v _c 6.74 8.04 Sufficient	N/mm ²	(3 layers 20T32) ξ _s v _c (3T16-150)	=	0.41

*ULS4C1 @ 3.5m Depth

Element ID = P-25 Crosshead (ULS4C1 - SV20) @ 3.5m Depth

f _{cu} f _y b d	= = =	40 460 3,000 3,252	N/mm ² N/mm ² mm mm			
V _{ult}	=	10,465	kN			
V	=	1.07	N/mm ²	Remarks :	0.К	
Depth Factor,	, ξ _s =	0.700				
As	=	48,240	mm ²	(3 layers 20T32)		
Vc	=	0.58	N/mm ²	ξ _s v _c	=	0.41
v	>	ξ _s v _c				
$A_{sv}/s_{v,req'd}$	=	7.97				
A _{sv} /s _{v,prov}	=	8.04		(3T16-150)		
		Sufficient	1			

8.2.3 Crack Width Check (SLS) for P-25 Crosshead

The crosshead crack width is calculated based on the following parameter;

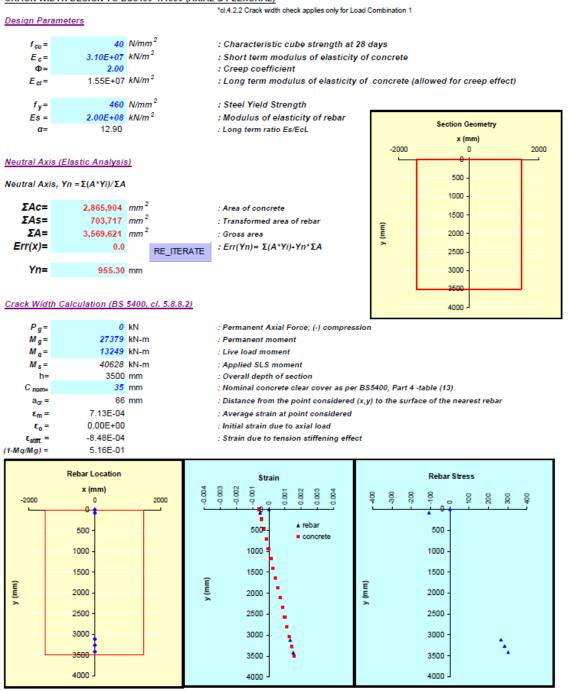
Crosshead P-25 (Type P1-A)

- Width = 3000mm, Depth = 3500mm, f_{cu}=40MPa
- Top Reinforcement = T32-150 (3 layers)
- Bottom Reinforcement = T20 150 (1 layer)

The computed crosshead crack width for Pier P-25 (Type P1-A) is summarized as follows:-

Table 53. Summary of P-25 SLS crack width check

	Crack W	idth (mm)
Loading Criteria	Without Sidebar	With Sidebar
BD 37/88 (3 Notional Lanes)	0.138	0.115

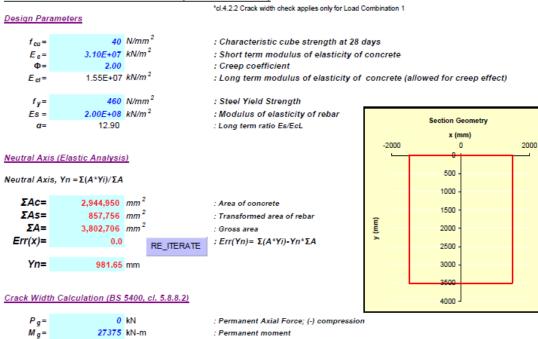

The computed crack width is 0.138mm without taking into account side reinforcement and 0.115mm with side reinforcement. Hence, the crack width is less than the allowable limit of 0.250mm

8.2.3.1 BD 37/88 (3 Notional Lanes)

* Without Side Reinforcement

TITTLE : Crosshead P25 Type P1-A SLS1C1 (WITHOUT SIDEBAR) 3 Notional Lanes

CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL)


L	ocation	То	Nearest Rel	bar						
х (тт)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	а _{ст} (mm)	ε ₁	٤٥	E suff.	ε _m	W _{max} (mm)
0	0	0	79	20	69	-5.86E-04	0.00E+00	0.00E+00	-5.86E-04	uncracked
0	0	0	0	0	0	-5.86E-04	0.00E+00	0.00E+00	-5.86E-04	uncracked
0	0	0	0	0	0	-5.86E-04	0.00E+00	0.00E+00	-5.86E-04	uncracked
0	0	0	0	0	0	-5.86E-04	0.00E+00	0.00E+00	-5.86E-04	uncracked
0	0	0	0	0	0	-5.86E-04	0.00E+00	0.00E+00	-5.86E-04	uncracked
0	3500	0	3418	32	66	1.56E-03	0.00E+00	-8.48E-04	7.13E-04	0.138

Private & Confidential Prepared by Kumpulan **IKRAM** Sdn Bhd

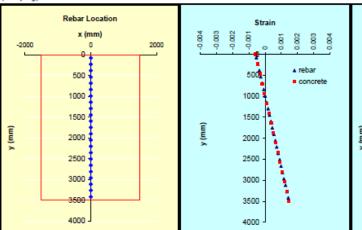
* With Side Reinforcement T20-150 (Both Sides)

CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL)

$P_g =$	0	kN
$M_g =$	27375	kN-m
$M_q =$	13249	kN-m
Μ _s =	40624	kN-m
h=	3500	mm
C nom=	35	mm
a _{cr} =	66	mm
ε _m =	5.96E-04	
ε0 =	0.00E+00	
ε _{stm} =	-8.90E-04	
q/Mg) =	5.16E-01	

(1-M

: Permanent Axial Force;
: Permanent moment
: Live load moment
: Applied SLS moment
: Overall depth of section


: Nominal concrete clear cover as per BS5400, Part 4 -table (13)

: Distance from the point considered (x,y) to the surface of the nearest rebar

: Average strain at point considered

: Initial strain due to axial load

: Strain due to tension stiffening effect

			Rebar S	tress				
0.004	48	300 200	8 8	- 100	- 200	300	400	
e			500 -					
-			1000					
			1500 -	.				
	y (mm)		2000 -	A				
	^		2500 -	-	Υ.			
			3000 -		A			
			3500 -			•		
			4000					

l	Location	То	Nearest Rel	bar						
х (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε1	٤,	ε _{suff.}	ε _m	W _{max} (mm)
0	0	0	79	20	69	-5.79E-04	0.00E+00	0.00E+00	-5.79E-04	uncracked
0	0	0	0	0	0	-5.79E-04	0.00E+00	0.00E+00	-5.79E-04	uncracked
0	0	0	0	0	0	-5.79E-04	0.00E+00	0.00E+00	-5.79E-04	uncracked
0	0	0	0	0	0	-5.79E-04	0.00E+00	0.00E+00	-5.79E-04	uncracked
0	0	0	0	0	0	-5.79E-04	0.00E+00	0.00E+00	-5.79E-04	uncracked
0	3500	0	3418	32	66	1.49E-03	0.00E+00	-8.90E-04	5.96E-04	0.115

8.3. Summary of Design Review for P-25

(a) The pier ultimate capacity (ULS) and crack width (SLS) check is summarized as below.

	Ultimate Moment Capacity (kN.m)						
Pier Type	3 Notional Lanes (BD37/88)	2 Notional Lanes (BD37/88)	3 Notional Lanes (JKR MTAL)				
P1-A (P-25)	O.K	-	-				

Table 54. P-25 - Summary of pier ULS moment capacity

Table 55. P-25 - Summary of pier SLS crack width

	Crack Width (mm)			
Pier Type	3 Notional Lanes (BD37/88)	2 Notional Lanes (BD37/88)	3 Notional Lanes (JKR MTAL)	
P1-A (P-25)	0.087	-	-	

Based on the checking, the existing pier column design satisfied the ULS and SLS criteria.

(b) The crosshead ultimate moment capacity (ULS) check is summarized as below.

Loading Criteria	Ult. Moment C	apacity (kN.m)	Maximum ULS	Capacity	
	Without Sidebar	With Sidebar	Moment (kN.m)	Ratio	
BD 37/88 (3 Notional Lanes)	59,830	65,605	53,530	0.89	

*Capacity ratio is based on Maximum ULS Moment / Ult. Moment Capacity (without sidebar)

The checking shows that the existing design of the crosshead satisfies the ULS moment capacity.

(c) The crosshead ultimate shear capacity (ULS) check is summarized as below.

Load Case	Asv/sv reg'd	Asv/sv prov	Capacity Ratio
ULS1C1	8.46	8.04	1.05
ULS2C1	7.19	8.04	0.89
ULS3C1	7.98	8.04	0.99
ULS4C1	8.44	8.04	1.05

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

Load Case	Asv/sv regid	Asv/sv prov	Capacity Ratio
ULS1C1	7.60	8.04	0.94
ULS2C1	6.57	8.04	0.82
ULS3C1	6.74	8.04	0.84
ULS4C1	7.97	8.04	0.99

Table 58. P-25 – Summary	v of crosshead ULS shear	capacity @ 3.5m depth

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

The checking shows that the existing shear capacity design at 2.0m crosshead depth section did not fulfill the ULS requirement for load case ULS1C1 (HA+KEL) and ULS4C1 (SV20). In the other hand, the existing shear capacity design at 3.5m crosshead depth section satisfies the ULS criteria.

(d) The crosshead crack width (SLS) check is summarized as below.

Table 59. P-25 – S	ummary of crosshead	SLS crack width

	3 Notional Lanes (BD 37/88)				
Crosshead Type	Crack Width (mm)				
Crossnead Type	Without Sidebar	With Sidebar			
P1-A (P-25)	0.138	0.115			

The checking shows that the existing design of the crosshead satisfies the SLS crack width criteria of 0.250mm.

9. DESIGN REVIEW FOR PIER P-33 (TYPE P1-A)

From the 3D analysis, the load effects under each load case can be obtained for P-33.

9.1. Pier Column Check for Pier P-33

The member forces for pier column are presented below for various load combinations. The design checks for pier column members under ULS and SLS are performed.

9.1.1 Analysis Results for Pier P-33 Column

The maximum design forces at pier column base are tabulated.

9.1.1.1 BD 37/88 (3 Notional Lanes)

						Combination 1		
No.	Load Case	N (kN)	M (kN.m)	γ	fL	γ _{f3}		
				SLS	ULS	ULS		
1	SW	10350	-4	1.00	1.15	1.10		
2	Deck Slab	1860	-2	1.00	1.15	1.10		
3	SDL (Parapet)	1098	-3	1.00	1.20	1.10		
4	Premix	547	-1	1.20	1.75	1.10		
5	HA+KEL (1 CARRIAGEWAY)	2574	-11595	1.20	1.50	1.10		
6	HA+KEL (2 CARRIAGEWAY)	5148	0	1.20	1.50	1.10		
7	HA+HB30 (1 CARRIAGEWAY)	1881	-8130	1.10	1.30	1.10		
8	HA+HB30 (2 CARRIAGEWAY)	4182	2250	1.10	1.30	1.10		
9	HB45	1551	-10063	1.10	1.30	1.10		
10	SV20	3005	-12640	1.10	1.30	1.10		

Table 60. P-33 pier force – BD 37/88 (3 Notional Lanes)

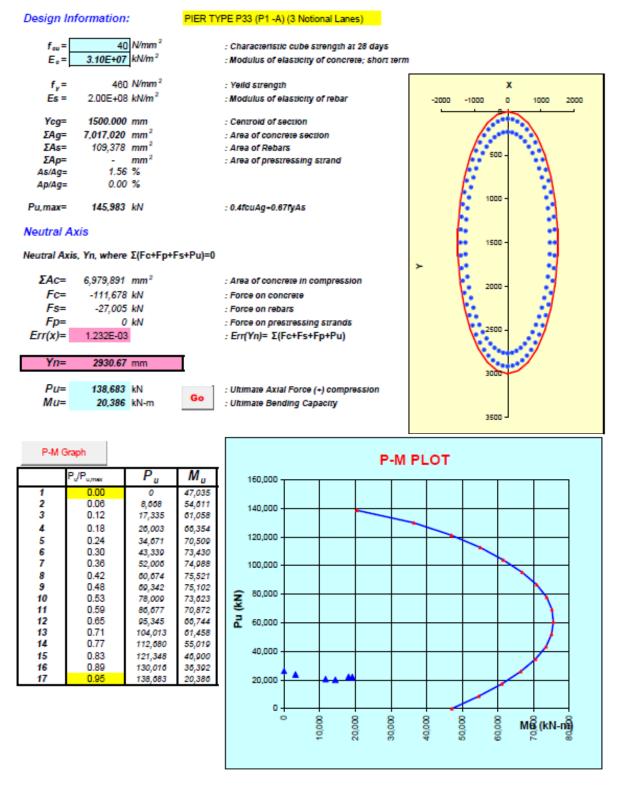
*SW includes 14 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms, crosshead and column

Table 61. P-33 pier force load combination – BD 37/88 (3 Notional Lanes) <u>SLS Design to Load Combination 1</u>

Case #	Load Combination	N (kN)	M (kN.m)	N _g (kN)	M _g (kN.m)	M _q (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL 1 CARRIAGEWAY)	17053	-13923	13965	-9	-13914
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL 2 CARRIAGEWAY)	20142	-9	13965	-9	0
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30 1 CARRIAGEWAY)	16034	-8952	13965	-9	-8943
SLS4C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30 2 CARRIAGEWAY)	18565	2466	13965	-9	2475
SLS5C1	(SW+Deck Slab+SDL+Premix) + (HB45)	15671	-11079	13965	-9	-11070
SLS6C1	(SW+Deck Slab+SDL+Premix) + (SV20)	17270	-13913	13965	-9	-13904

ULS Design to Load Combination 1

Case #	Load Combination	N (kN)	M (kN.m)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL 1 CARRIAGEWAY)	22195	-19143
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL 2 CARRIAGEWAY)	26442	-12
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30 1 CARRIAGEWAY)	20639	-11637
ULS4C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30 2 CARRIAGEWAY)	23929	3206
ULS5C1	(SW+Deck Slab+SDL+Premix) + (HB45)	20167	-14402
ULS6C1	(SW+Deck Slab+SDL+Premix) + (SV20)	22246	-18087

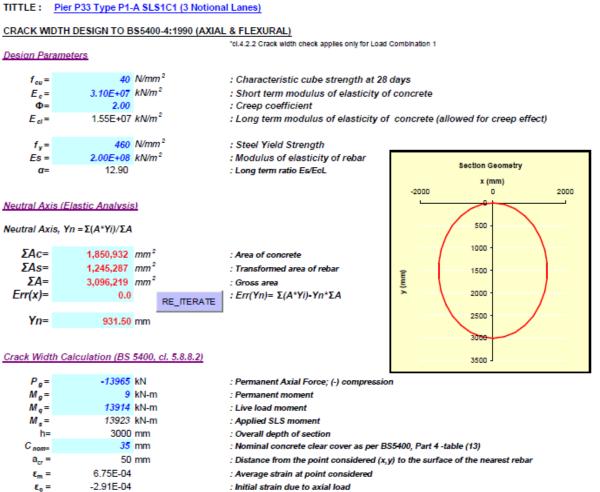

9.1.2 Section Capacity Check (ULS) for Pier P-33 Column

The pier section capacity is calculated based on the following parameter;

• Ø3000mm, f_{cu}=40MPa, 120-T32

9.1.2.1 BD 37/88 (3 Notional Lanes)

Ultimate Section Capacity BS5400


The applied forces lies within the P-M interaction envelopes; hence the existing design of Pier P-11A is adequate at ULS.

9.1.3 Crack Width Check (SLS) for Pier P-33 Column

The pier crack width is calculated based on the following parameter;

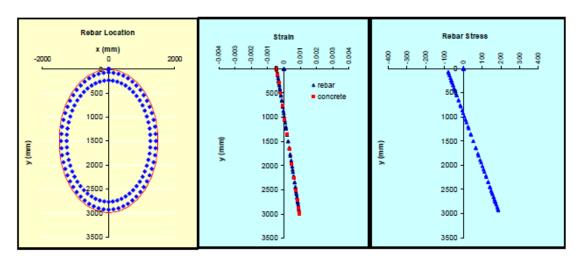
Ø3000mm, f_{cu}=40MPa, 120-T32

9.1.3.1 BD 37/88 (3 Notional Lanes)

: Initial strain due to axial load

: Strain due to tension stiffening effect

0.00E+00


-1.55E+03

ε_{stiff.} =

(1-Mq/Mg) =

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Final Report

L	ocation	Το	Nearest Rel	bar						
x	y = a'	xr	yr	ø	a _{cr}	ε,	εο	E _{stiff.}	ε"	Wmax
(<i>mm</i>)	(mm)	(<i>mm</i>)	(<i>mm</i>)	(<i>mm</i>)	(<i>mm</i>)					(<i>mm</i>)
0	0	0	66	32	50	-0.00043	-2.91E-04	0	-7.26E-04	uncracked
0	0	0	0	0	0	-0.00043	-2.91E-04	0	-7.26E-04	uncracked
0	0	0	0	0	0	-0.00043	-2.91E-04	0	-7.26E-04	uncracked
0	0	0	0	0	0	-0.00043	-2.91E-04	0	-7.26E-04	uncracked
0	0	0	0	0	0	-0.00043	-2.91E-04	0	-7.26E-04	uncracked
0	3000	0	2934	32	50	0.000966	-2.91E-04	0.00E+00	6.75E-04	0.100

The computed crack width for Pier P-33 (Type P1-A) is summarized as follows;

	Crack Width (mm)					
Pier Type	3 Notional	2 Notional	3 Notional			
Пегтурс	Lanes Lanes		Lanes (JKR			
	(BD37/88)	(BD37/88)	MTAL)			
P1-A (P-33)	0.100	-	-			

Table 62. Summary of P-33 crack width check

Hence, the existing design of Pier P-33 is less than the allowable crack width of 0.25mm.

9.2. Crosshead Check for Pier P-33

The member forces of crosshead are presented below for various load combinations. The design checks for crosshead members under ULS and SLS are performed based on the following as-built drawing.

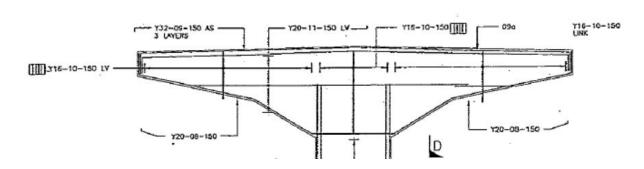


Figure 45. P-33 As-built crosshead reinforcement

9.2.1 Analysis Results for Pier P-33 Crosshead

The maximum design forces for crosshead are tabulated for various cases.

9.2.1.1 BD 37/88 (3 Notional Lanes)

Table 63. P-33 crosshead moment – BD 37/88 (3 Notional Lanes)

			Combir		
No.	Load Case	Mmax (kN.m)	γ	′fL	γ _{f3}
		(((((((((((((((((((((((((((((((((((((((SLS	ULS	ULS
1	SW	15939	1.00	1.15	1.10
2	Deck Slab	3834	1.00	1.15	1.10
3	SDL (Parapet)	2636	1.00	1.20	1.10
4	Premix	1128	1.20	1.75	1.10
5	HA+KEL	11353	1.20	1.50	1.10
6	HA+HB30	10336	1.10	1.30	1.10
7	HB45	9875	1.10	1.30	1.10
8	SV20	12393	1.10	1.30	1.10

*SW includes 14 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms and crosshead

Table 64. P-33 crosshead moment load combination – BD 37/88 (3 Notional Lanes)

SLS Design to Load Combination 1

Case #	Load Combination	M (kN.m)	M_q (kN.m)	M _g (kN.m)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	37386	23763	13623
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	35132	23763	11369
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	34626	23763	10863
SLS4C1	(SW+Deck Slab+SDL+Premix) + (SV20)	37395	23763	13632

ULS Design to Load Combination 1

Case #	Load Combination	M (kN.m)
	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	49396
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	45444
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	44786
	(SW+Deck Slab+SDL+Premix) + (SV20)	48386

Table 65. P-33 crosshead shear @ 2.0m depth – BD 37/88 (3 Notional Lanes)

			Combir	nation 1	
No.	Load Case	Vmax (kN)	γ	/fL	γ _{f3}
			SLS	ULS	ULS
1	SW	-1959	1.00	1.15	1.10
2	Deck Slab	-475	1.00	1.15	1.10
3	SDL (Parapet)	-321	1.00	1.20	1.10
4	Premix	-140	1.20	1.75	1.10
5	HA+KEL	-1457	1.20	1.50	1.10
6	HA+HB30	-1047	1.10	1.30	1.10
7	HB45	-1413	1.10	1.30	1.10
8	SV20	-1608	1.10	1.30	1.10

*StaadPro member 6205

*SW includes 14 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms and crosshead

Table 66. P-33 crosshead shear @ 2.0m depth load combination – BD 37/88 (3 Notional Lanes)

ULS Design to Load Combination 1

Case #	Load Combination	V (kN)
	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	-6176
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	-5269
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	-5793
	(SW+Deck Slab+SDL+Premix) + (SV20)	-6072

			Combination 1		
No.	Load Case	Vmax (kN)	γ	′fL	ŶfЗ
			SLS	ULS	ULS
1	SW	-3472	1.00	1.15	1.10
2	Deck Slab	-810	1.00	1.15	1.10
3	SDL (Parapet)	-445	1.00	1.20	1.10
4	Premix	-238	1.20	1.75	1.10
5	HA+KEL	-2294	1.20	1.50	1.10
6	HA+HB30	-1605	1.10	1.30	1.10
7	HB45	-1569	1.10	1.30	1.10
8	SV20	-2689	1.10	1.30	1.10

Table 67. P-33 crosshead shear @ 3.5m depth – BD 37/88 (3 Notional Lanes)

*StaadPro member 6208

*SW includes 14 nos. precast M10, 2 nos. precast UM10 (LHS & RHS), diaphragms and crosshead

Table 68. P-33 crosshead shear @ 3.5m depth load combination – BD 37/88 (3 Notional Lanes)

ULS Design to Load Combination 1

Case #	Load Combination	V (kN)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)	-10248
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)	-8757
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HB45)	-8706
	(SW+Deck Slab+SDL+Premix) + (SV20)	-10308

9.2.2 Section Capacity Check (ULS) for P-33 Crosshead

The crosshead section capacity is calculated based on the following parameter;

Crosshead P-33 (Type P1-A)

- Width = 3000mm, Depth = 3500mm, f_{cu}=40MPa
- Top Reinforcement = T32-150 (3 layers)
- Bottom Reinforcement = T20 150 (1 layer)

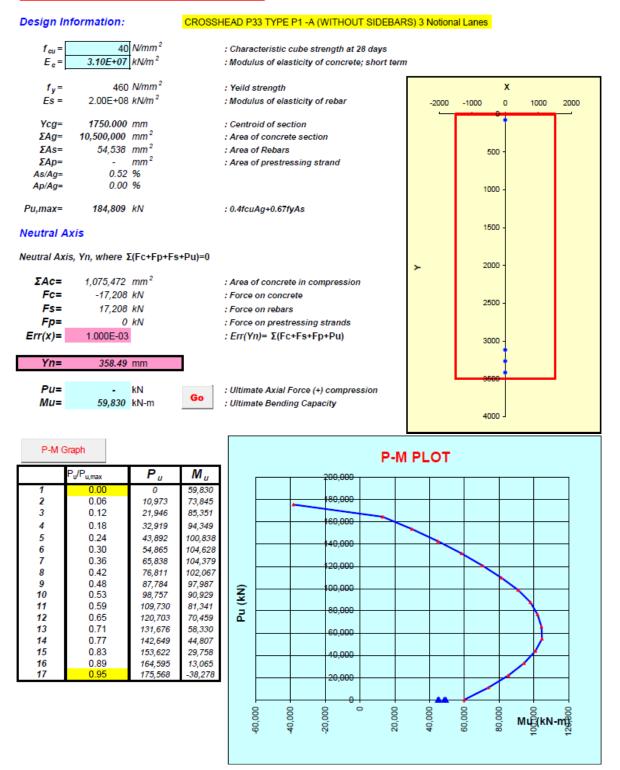
9.2.2.1 Ultimate Moment Capacity Check for P-33 Crosshead

The computed crosshead ultimate moment capacities for P-33 (Type P1-A) is computed and compared with the ULS applied moments.

	Ult. Moment C	apacity (kN.m)	Maximum	Capacity Ratio	
Loading Criteria	Without Sidebar	With Sidebar	ULS Moment (kN.m)		
BD 37/88 (3 Notional Lanes)	59,830	65,605	49,396	0.83	

Table 69. Summary of P-33 crosshead ULS moment capacity check

*Capacity ratio is based on Maximum ULS Moment / Ult. Moment Capacity (without sidebar)

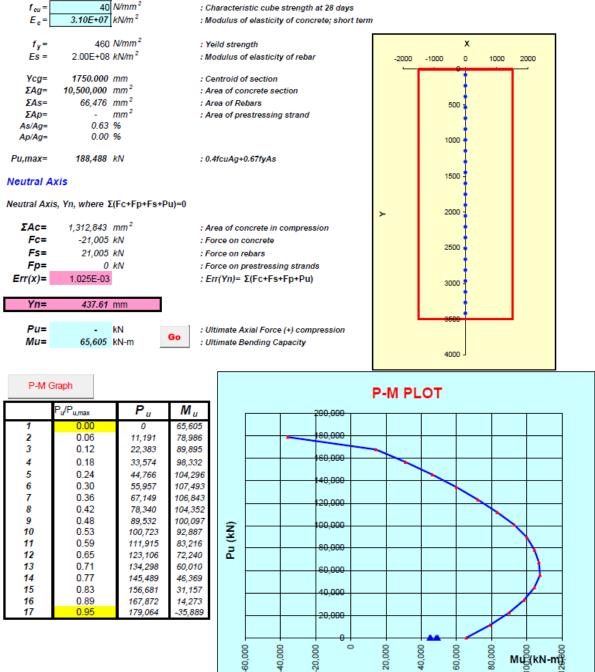

The applied ULS moment is within the P-M interaction envelope. Hence, the existing crosshead moment capacity design for P-33 (Type P1-A) is adequate at ULS.

The detailed computations of the sectional moment capacities are presented below.

9.2.2.1.1 BD 37/88 (3 Notional Lanes)

*Without Side Reinforcement

Ultimate Section Capacity BS5400



* With Side Reinforcement T20-150 (Both Sides)

Ultimate Section Capacity BS5400

CROSSHEAD P33 TYPE P1 -A (WITH SIDEBARS) 3 Notional Lanes

9.2.2.2 Ultimate Shear Capacity Check for P-33 Crosshead

The crosshead ultimate shear link required for Pier P-33 (Type P1-A) is computed and compared to the shear link provided.

Load Case	Asv/sv _{req'd}	Asv/sv prov	Capacity Ratio
ULS1C1	7.87	8.04	0.98
ULS2C1	6.58	8.04	0.82
ULS3C1	7.87	8.04	0.98
ULS4C1	7.73	8.04	0.96

Table 70. Summary of P-33 ULS shear capacity check @ 2.0m depth

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

Table 71. Summary of P-33 ULS shear capacity check @ 3.5m depth	Table 71. Summar	y of P-33 ULS shear capacity cl	heck @ 3.5m depth
---	------------------	---------------------------------	-------------------

Load Case	Asv/sv _{req'd}	Asv/sv prov	Capacity Ratio
ULS1C1	7.81	8.04	0.97
ULS2C1	6.66	8.04	0.83
ULS3C1	6.62	8.04	0.82
ULS4C1	7.85	8.04	0.98

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

Based on the checking, the shear link provided is more than required. Hence, the existing crosshead shear design for P-33 (Type P1-A) is adequate at ULS.

The detailed computations of the sectional shear capacities are presented as below.

9.2.2.2.1 BD 37/88 (3 Notional Lanes)

*ULS1C1 @ 2.0m Depth

Element ID = P	-33 Cr	osshead (I	JLS1C1 - I	BD 37/88 3 Notional Lane	es) @ 2.0)m Depth
f _{cu}	=	40	N/mm ²			
fy	=	460	N/mm ²			
b	=	3,000	mm			
d	=	1,752	mm			
	_	0.470	LAL			
dit	=		kN			
V	=	1.18	N/mm ²	Remarks :	0.K	
Depth Factor, ξ_s =		0.731				
As	=	48,240	mm ²	(3 layers of 20T32)		
Vc	=	0.72	N/mm ²	ξ _s v _c	=	0.52
v	>	ξ _s v _c				
A _{sv} /s _{v,req'd}	=	7.87				
A _{sv} ∕s _{v,req'd} A _{sv} ∕s _{v,prov}	=	8.04		(3T16-150)		
		Sufficient	:!			

*ULS2C1 @ 2.0m Depth

Element ID = P	-33 Cr	osshead (l	JLS2C1 - I	BD 37/88 3 Notional Lan	es) @ 2.(Om Depth
f _{cu}	=	40	N/mm ²			
f _y	=	460	N/mm ²			
b	=	3,000	mm			
d	=	1,752	mm			
N/	_	5 000	LNI			
V _{ult}	=	-,	kN			
V	=	1.00	N/mm ²	Remarks :	0.K	
Depth Factor, ξ_s =		0.731				
As	=	48,240	mm ²	(3 layers of 20T32)		
Vc	=	0.72	N/mm ²	ξ _s v _c	=	0.52
v	>	$\xi_s v_c$				
A _{sv} /s _{v,req'd}	=	6.58				
A _{sv} /s _{v,req'd} A _{sv} /s _{v,prov}	=	8.04		(3T16-150)		
		Sufficient	1			

*ULS3C1 @ 2.0m Depth

Element ID = P	-33 Cr	osshead (l	JLS3C1 -	BD 37/88 3 Notional Lane	es) @ 2.0)m Depth
f _{cu}	=	40	N/mm ²			
f _y	=	460	N/mm ²			
b	=	3,000	mm			
d	=	1,752	mm			
V _{ult}	=	5,793	kN			
V	=	1.10	N/mm ²	Remarks :	0.K	
Depth Factor	, ξ _s =	0.731				
As	=	48,240	mm ²	(3 layers of 20T32)		
Vc	=	0.72	N/mm ²	ξ _s v _c	=	0.52
v	>	ξ _s v _c				
	=	7.33				
	=	8.04		(3T16-150)		
		Sufficient	!			

*ULS4C1 @ 2.0m Depth

Element ID = P-33 Crosshead (ULS4C1 - SV20) @ 2.0m Depth f_{cu} 40 N/mm² = fy = 460 N/mm² 3,000 b = mm d = 1,752 mm Vult 6,072 kΝ = 1.16 N/mm² Remarks : = O.K ٧ Depth Factor, ξ_s = 0.731 A_{s} mm² 48,240 (3 layers of 20T32) = 0.72 0.52 = N/mm² ξ_sv_c = V_{c} ٧ > $\xi_s v_c$ A_{sv}/s_{v,req'd} 7.73 = A_{sv}/s_{v,prov} 8.04 (3T16-150) = Sufficient!

*ULS1C1 @ 3.5m Depth

Element ID = P	-33 Cr	osshead (l	JLS1C1 - I	BD 37/88 3 Notiona	al Lane	s) @ 3.5	im Depth
f _{cu}	=	40	N/mm ²				
f _y	=	460	N/mm ²				
b	=	3,000	mm				
d	=	3,252	mm				
V _{ult}	=	10,248	kN				
V	=	1.05	N/mm ²	Rema	arks :	0.K	
Depth Factor	, ξ _s =	0.700					
As	=	48,240	mm ²	(3 layers 20T32)			
Vc	=	0.58	N/mm ²		$\xi_s v_c$	=	0.41
v	>	$\xi_s v_c$					
37 Y,ICY U	=	7.81					
A _{sv} /s _{v,prov}	=	8.04		(3T16-150)			
		Sufficient	1				

*ULS2C1 @ 3.5m Depth

Element ID = P-33 Crosshead (ULS2C1 - BD 37/88 3 Notional Lanes) @ 3.5m Depth N/mm² f_{cu} = 40 460 N/mm² fy = b = 3,000 mm d 3,252 = mm 8,757 kΝ V_{ult} = 0.90 N/mm² v = Remarks : O.K Depth Factor, ξ_s = 0.700 mm^2 = 48,240 (3 layers 20T32) A_s = 0.58 N/mm² ξ_sv_c = 0.41 Vc v > $\xi_s v_c$ A_{sv}/s_{v,req'd} = 6.66 $A_{sv}/s_{v,prov}$ = 8.04 (3T16-150) Sufficient!

*ULS3C1 @ 3.5m Depth

Element ID =	P-33 Ci	rosshead (I	ULS3C1 - I	BD 37/88 3 Notional Lan	es) @ 3.	5m Depth
f _{cu}	=	40	N/mm ²			
f _v	=	460	N/mm ²			
b	=	3,000	mm			
d	=	3,252	mm			
V _{ult}	=	8,706	kN			
V	=	0.89	N/mm ²	Remarks :	0.К	
Depth Facto	or, ξ _s =	0.700				
As	=	48,240	mm ²	(3 layers 20T32)		
Vc	=	0.58	N/mm ²	ξ _s v _c	=	0.41
v	>	ξ _s v _c				
A _{sv} /s _{v,req'd}	=	6.62				
A _{sv} /s _{v,prov}	=	8.04		(3T16-150)		
-		Sufficient	t!			

*ULS4C1 @ 3.5m Depth

Element ID = P-33 C	rosshead (ULS4C1 -	SV20) @ 3.5m Depth		
f _{cu} = f _y = b =	40 460 3,000	N/mm ² N/mm ² mm			
d =	3,252	mm			
V _{ult} = v =	10,308 1.06	kN N/mm ²	Remarks :	0.К	
Depth Factor, ξ_s =	0.700				
A _s =			(3 layers 20T32)		
v _c =	0.58	N/mm ²	ξ _s v _c	=	0.41
v >	ξ _s v _c				
A _{sv} /s _{v,req'd} =	7.85				
A _{sv} /s _{v,prov} =	8.04		(3T16-150)		
	Sufficient	t!			

9.2.3 Crack Width Check (SLS) for Pier P-33 Crosshead

The crosshead crack width is calculated based on the following parameter;

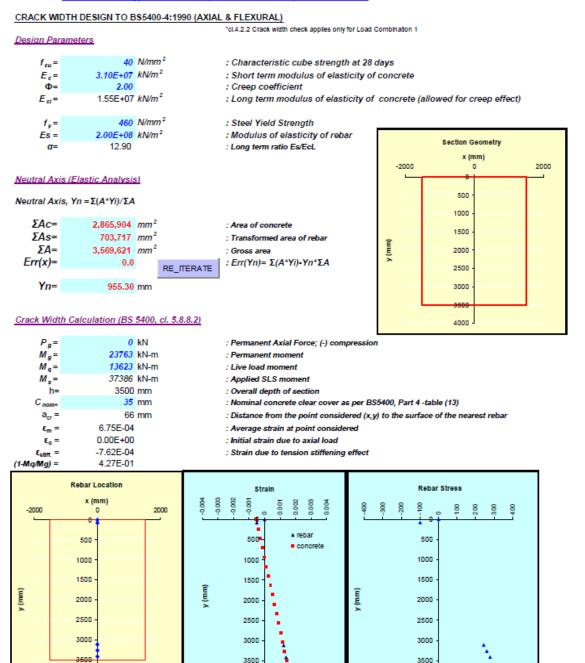
Crosshead P-33 (Type P1-A)

- Width = 3000mm, Depth = 3500mm, f_{cu}=40MPa
- Top Reinforcement = T32-150 (3 layers)
- Bottom Reinforcement = T20 150 (1 layer)

The computed crosshead crack width for Pier P-33 (Type P1-A) is summarized as follows;

Table 72. Summary of P-33 crosshead SLS crack width check

	Crack Width (mm)				
Loading Criteria	Without	With			
	Sidebar	Sidebar			
BD 37/88 (3 Notional Lanes)	0.130	0.110			


The computed crack width is 0.130mm without taking into account side reinforcement and 0.110mm with side reinforcement. Hence, the crack width is less than the allowable limit of 0.250mm

The detailed computation of the crack widths are presented below.

9.2.3.1 BD 37/88 (3 Notional Lanes)

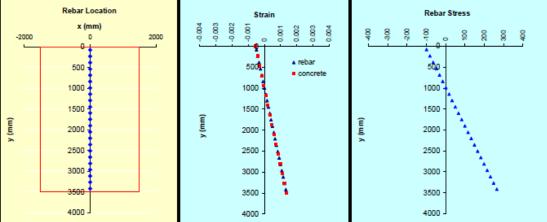
* Without Side Reinforcement

TITTLE : Crosshead P33 Type P1-A SLS1C1 (WITHOUT SIDEBAR) 3 Notional Lanes

	4000 J			4000				4000 J		
	Location	T	Nearest Re		1					
x (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{er} (mm)	ε,	٤٥	ε _{stiff.}	ε"	W _{mex} (mm)
0	0	0	79	20	69	-5.39E-04	0.00E+00	0.00E+00	-5.39E-04	uncracked
0	0	0	0	0	0	-5.39E-04	0.00E+00	0.00E+00	-5.39E-04	uncracked
0	0	0	0	0	0	-5.39E-04	0.00E+00	0.00E+00	-5.39E-04	uncracked
0	0	0	0	0	0	-5.39E-04	0.00E+00	0.00E+00	-5.39E-04	uncracked
0	0	0	0	0	0	-5.39E-04	0.00E+00	0.00E+00	-5.39E-04	uncracked
0	3500	0	3418	32	66	1 AAE-03	0.00E±00	-7.62E-04	6 75E-04	0 130

4

3500


3500

Private & Confidential

2000

* With Side Reinforcement T20-150 (Both Sides)

TITTLE : Crosshead P33 Type P1-A SLS1C1 (WITH SIDEBAR) 3 Notional Lanes CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL) cl.4.2.2 Crack width check applies only for Load Combination 1 Design Parameters 40 N/mm² : Characteristic cube strength at 28 days f_{cu}= 3.10E+07 kN/m² : Short term modulus of elasticity of concrete E c = Φ= 2.00 : Creep coefficient 1.55E+07 kN/m² E_{cl}= : Long term modulus of elasticity of concrete (allowed for creep effect) 460 N/mm² : Steel Yield Strength $f_y =$ 2.00E+08 kN/m² Es = : Modulus of elasticity of rebar Section Geometry 12.90 : Long term ratio Es/EcL α= x (mm) -2000 0 Neutral Axis (Elastic Analysis) 500 Neutral Axis, $Yn = \Sigma(A^*Yi)/\Sigma A$ 1000 ΣAc= 2,944,950 mm² : Area of concrete 1500 857,756 mm² ΣAs= : Transformed area of rebar (mm) 3,802,706 mm² ΣA= : Gross area 2000 Err(x) =0.0 : $Err(Yn) = \Sigma(A^*Yi) \cdot Yn^*\Sigma A$ RE_ITERATE 2500 Yn= 981.65 mm 3000 Crack Width Calculation (BS 5400, cl. 5.8.8.2) 4000 0 kN $P_g =$: Permanent Axial Force; (-) compression $M_g =$ 23763 kN-m : Permanent moment M _ = 13623 kN-m : Live load moment M _s = 37386 kN-m : Applied SLS moment 3500 mm h= : Overall depth of section 35 mm : Nominal concrete clear cover as per BS5400, Part 4 -table (13) C nom= 66 mm : Distance from the point considered (x,y) to the surface of the nearest rebar a_{cr} = 5.68E-04 ε_m = : Average strain at point considered 0.00E+00 ε₀ = : Initial strain due to axial load ε_{stm} = -8.00E-04 : Strain due to tension stiffening effect (1-Mq/Mg) = 4.27E-01 Rebar Location Rebar Stress Strain

I	Location	Το	To Nearest Rebar							
х (mm)	y = a' (mm)	xr (mm)	yr (mm)	Ø (mm)	a _{cr} (mm)	ε ₁	٤٥	E suff.	ε _m	W _{max} (mm)
0	0	0	79	20	69	-5.33E-04	0.00E+00	0.00E+00	-5.33E-04	uncracked
0	0	0	0	0	0	-5.33E-04	0.00E+00	0.00E+00	-5.33E-04	uncracked
0	0	0	0	0	0	-5.33E-04	0.00E+00	0.00E+00	-5.33E-04	uncracked
0	0	0	0	0	0	-5.33E-04	0.00E+00	0.00E+00	-5.33E-04	uncracked
0	0	0	0	0	0	-5.33E-04	0.00E+00	0.00E+00	-5.33E-04	uncracked
0	3500	0	3418	32	66	1.37E-03	0.00E+00	-8.00E-04	5.68E-04	0.110

9.3. Strut and Tie Analysis (STM) for Pier P-33 Crosshead

The STM model was based on BD 37/88 3 notional lanes loading criteria for Ultimate Limit State Load Combination 1.

Summary of maximum bearing force based on BD 37/88 (3 Notional Lanes)

										Combir	nation 1	
No.	Load Case	N ₁ (kN)	N ₂ (kN)	N ₃ (kN)	N ₄ (kN)	N ₅ (kN)	N ₆ (kN)	N ₇ (kN)	N ₈ (kN)	γ	rL	γ _{r3}
										SLS	ULS	ULS
1	SW	324	351	365	372	367	347	303	398	1.00	1.15	1.10
2	Deck Slab	144	105	118	118	116	110	99	120	1.00	1.15	1.10
3	SDL (Parapet)	286	-42	38	45	42	38	37	104	1.00	1.20	1.10
4	Premix	42	31	35	35	34	32	29	35	1.20	1.75	1.10
5	HA+KEL (1)	554	278	265	446	248	231	273	151	1.20	1.50	1.10
6	HA+KEL (2)	419	336	274	458	273	269	315	229	1.20	1.50	1.10
7	HA+HB30 (1)	492	179	273	182	117	154	208	114	1.10	1.30	1.10
8	HA+HB30 (2)	352	240	283	194	142	193	252	192	1.10	1.30	1.10
9	HB45	787	149	326	181	75	39	12	36	1.10	1.30	1.10
10	SV20	260	309	543	531	543	319	184	175	1.10	1.30	1.10

										Combir	nation 1	
No.	Load Case	N ₉ (kN)	N ₁₀ (kN)	N ₁₁ (kN)	N ₁₂ (kN)	N ₁₃ (kN)	N ₁₄ (kN)	N ₁₅ (kN)	N ₁₆ (kN)	γ	íL.	γгз
										SLS	ULS	ULS
1	SW	398	303	347	367	372	364	352	324	1.00	1.15	1.10
2	Deck Slab	120	99	110	116	119	117	106	144	1.00	1.15	1.10
3	SDL (Parapet)	104	37	38	42	45	37	-41	286	1.00	1.20	1.10
4	Premix	35	29	32	34	35	34	31	42	1.20	1.75	1.10
5	HA+KEL (1)	77	42	39	25	12	10	58	-135	1.20	1.50	1.10
6	HA+KEL (2)	230	316	257	294	449	256	363	409	1.20	1.50	1.10
7	HA+HB30 (1)	58	34	35	26	18	15	39	-62	1.10	1.30	1.10
8	HA+HB30 (2)	207	252	237	275	371	262	278	451	1.10	1.30	1.10
9	HB45	-5	-13	-5	-5	-7	-9	-16	6	1.10	1.30	1.10
10	SV20	92	45	40	24	10	7	50	-127	1.10	1.30	1.10

SLS Design to Load Combination 1

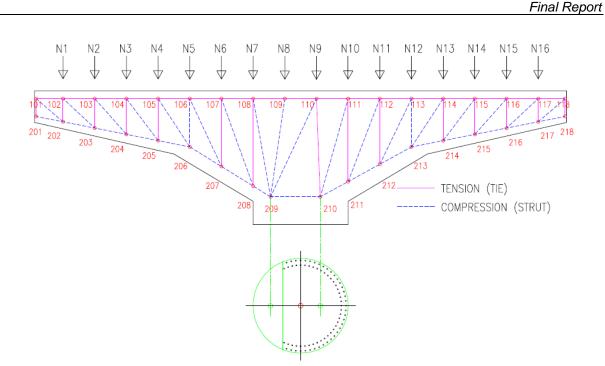
Case #	Load Combination	N1 (kN)	N ₂ (kN)	N ₃ (kN)	N ₄ (kN)	N ₅ (kN)	N ₆ (kN)	N ₇ (kN)	N ₈ (kN)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)(1)	1470	785	880	1112	863	810	802	847
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)(2)	1308	854	891	1127	894	857	852	940
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)(1)	1347	647	862	777	694	703	702	790
SLS4C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)(2)	1193	714	873	791	722	746	751	876
SLS5C1	(SW+Deck Slab+SDL+Premix) + (HB45)	1671	615	921	777	648	577	487	704
SLS6C1	(SW+Deck Slab+SDL+Premix) + (SV20)	1091	790	1159	1161	1163	885	676	858

SLS Design to Load Combination 1 (cont'd)

Case #	Load Combination	N ₉ (kN)	N ₁₀ (kN)	N ₁₁ (kN)	N ₁₂ (kN)	N ₁₃ (kN)	N ₁₄ (kN)	N15 (kN)	N ₁₆ (kN)
SLS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)(1)	758	525	580	596	592	571	524	643
SLS2C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)(2)	940	854	841	919	1116	866	889	1296
SLS3C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)(1)	729	512	571	595	597	576	497	736
SLS4C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)(2)	893	751	794	869	985	847	760	1301
SLS5C1	(SW+Deck Slab+SDL+Premix) + (HB45)	660	459	528	560	570	550	436	812
SLS6C1	(SW+Deck Slab+SDL+Premix) + (SV20)	766	524	577	592	588	566	509	665

ULS Design to Load Combination 1

Case #	Load Combination	N ₁ (kN)	N ₂ (kN)	N ₃ (kN)	N ₄ (kN)	N ₅ (kN)	N ₆ (kN)	N ₇ (kN)	N ₈ (kN)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)(1)	1966	1040	1164	1483	1141	1071	1064	1111
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)(2)	1743	1135	1179	1503	1183	1135	1133	1239
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)(1)	1756	836	1118	1007	899	911	911	1024
ULS4C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)(2)	1556	923	1132	1025	935	967	974	1136
ULS5C1	(SW+Deck Slab+SDL+Premix) + (HB45)	2178	793	1193	1006	839	747	630	912
ULS6C1	(SW+Deck Slab+SDL+Premix) + (SV20)	1424	1022	1503	1506	1509	1147	877	1112


ULS Design to Load Combination 1 (cont'd)

Case #	Load Combination	N ₉ (kN)	N ₁₀ (kN)	N ₁₁ (kN)	N ₁₂ (kN)	N ₁₃ (kN)	N ₁₄ (kN)	N ₁₅ (kN)	N ₁₆ (kN)
ULS1C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)(1)	989	683	755	773	767	739	680	828
ULS2C1	(SW+Deck Slab+SDL+Premix) + (HA+KEL)(2)	1240	1135	1113	1218	1487	1146	1183	1726
ULS3C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)(1)	944	663	739	770	773	745	640	962
ULS4C1	(SW+Deck Slab+SDL+Premix) + (HA+HB30)(2)	1158	973	1028	1126	1277	1098	982	1696
ULS5C1	(SW+Deck Slab+SDL+Premix) + (HB45)	854	594	683	725	738	711	562	1060
ULS6C1	(SW+Deck Slab+SDL+Premix) + (SV20)	993	678	747	766	761	733	657	870

Note : N₁ & N₁₆ is located at the tip of the cantilever (furthest from the pier)

HA+KEL(1) denotes 1 carriageway loaded, HA+KEL(2) denotes 2 carriageway loaded simultaneously

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

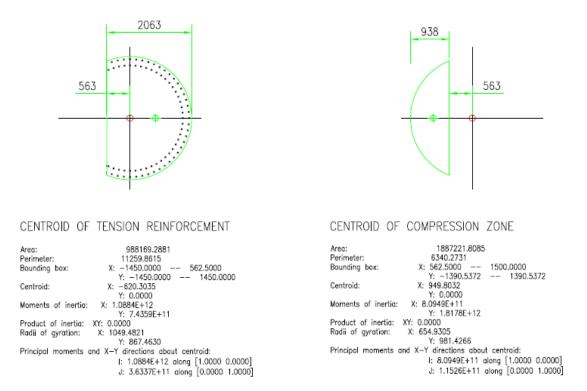


Figure 47. P-33 tension and compression zone based on ULS1C1

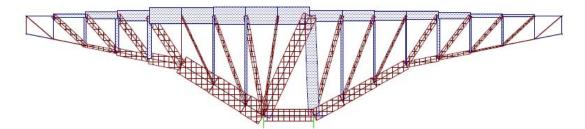


Figure 48. *P*-33 STM axial force dDiagram (Blue = Tension, Red = Compression)

The support for the STM model is modeled based on the centroid of the tension reinforcement zone and concrete compression zone as shown in Figure 47.

The tie tension forces obtained from the analysis are checked as follows;

Top Tension Ti	e (109-110) Check
----------------	-------------------

fy = 460 Mpa As,prov = 48,240 mm² (3 x 20T32 top reinforcement) Tu = 11,541 kN As,req = 28,839 mm² Remarks : As,prov > As,req O.K!

Vertical Tension Tie (110-210) Check

fy = 460 MpaAs,prov = 48,240 mm² (2) 16,578 mm² (3) 64,818 mm² (3) Tu = 7,157 kN As,req = 17,884 mm² Remarks : As,prov > As,req O.K!

(2x30T32 column main reinforcement - half column zone) (3T16-150 links in 2062mm tension zone)

Vertical Te	nsion Tie	(105-205)	Check
	460 0 8,040 8,040	Mpa mm ² _mm ² _mm ²	(3T16-150 links in 1000mm tension zone)
	2,945 7,359 As,prov >	mm ²	O.K!

The check shows that the reinforcement provided is sufficient to resist the tension tie forces.

The bottom compression strut forces obtained from the analysis are checked as follows;

Bottom Compression Strut (208-209) Check

fcu = 40 Mpa b = (Crosshead width) 3,000 mm d = 970 mm (Crosshead compression zone) Su = 13,244 kΝ 4.55 σ= Mpa Remarks : < 0.4fcu O.K

Based on the check, the concrete stress calculated is 4.55 N/mm^2 , which is less than $0.4f_{cu}$; 16.0 N/mm². Thus, the bottom strut concrete compression stress is within the strength limit.

The diagonal compression strut is checked as follows;

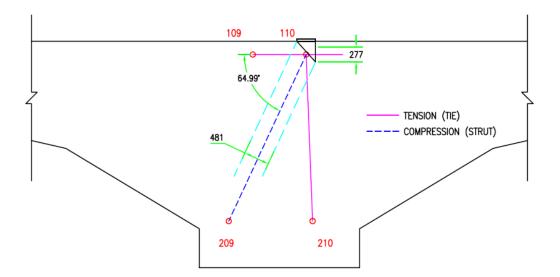


Figure 49. P-33 diagonal strut check

Diagonal Strut (110-209) Calculation based on ACI

Effective Compressive Strength for Node 110

β _n =	0.6	(CTT)	
f' _c =	40	Мра	(cube strength)
	4,640	psi	
$f_{c3(110)} =$	$0.85\beta_n f'_c$		(eq. A-8)
=	2.37	ksi	
=	16.32	Мра	
=	2.37		(eq. A-8)

(cl. C.9.3.2.6)

Calculate Width of Tie 109-110

φ =	0.85	
b _w =	3,000	mm
	118.2	in.
F =	11,541	kN
	2,594	k
	(h)f	

 $W_{(109-110)} = F / \phi(b_w) t_{cu}$ = 10.9 in. = 277.2 mm

Private & Confidential Prepared by Kumpulan **IKRAM** Sdn Bhd

Effective Compr	essive St	trength	for Strut 110-209	_		
0	4.00				0	
	1.00			(cl. A.3.2.1)	
f' _c =	40	Mpa		(cube stre	ngth)	
	4,640	psi		(cylinder s	trength)	
f _{ce(110-209)} =	0.85β _s f' _o	:		(eq. A-3)		
=	3.94	ksi				
=	27.20	Мра				
Check Strut 110-20	🤋 Capaci	ty				
W _{s(110-209)} =		mm		(measured f	rom draw	ving)
	18.9	in.				
$\phi F_{ns(110-209)} = \phi$	∮ f_{ce}W_{s(110-2}	₀₉₎ b _w		(eq. A-2)		
=	7,498	k				
=	33,349	kN	>	Su =	9,226	kN
	0.K!					

Based on the checking, the diagonal compression strut width is measured to be 480.6mm. The maximum ultimate compression strut force from the analysis is 9,226 kN, which is lower than the calculated capacity of 33,349 kN. Therefore, the diagonal compression strut capacity satisfies the ultimate limit force from the analysis.

9.4. Finite Element Analysis (FEM) for P-33

The FEM model was based on BD 37/88 3 notional lanes loading criteria for Serviceability Limit State Load Combination 1.

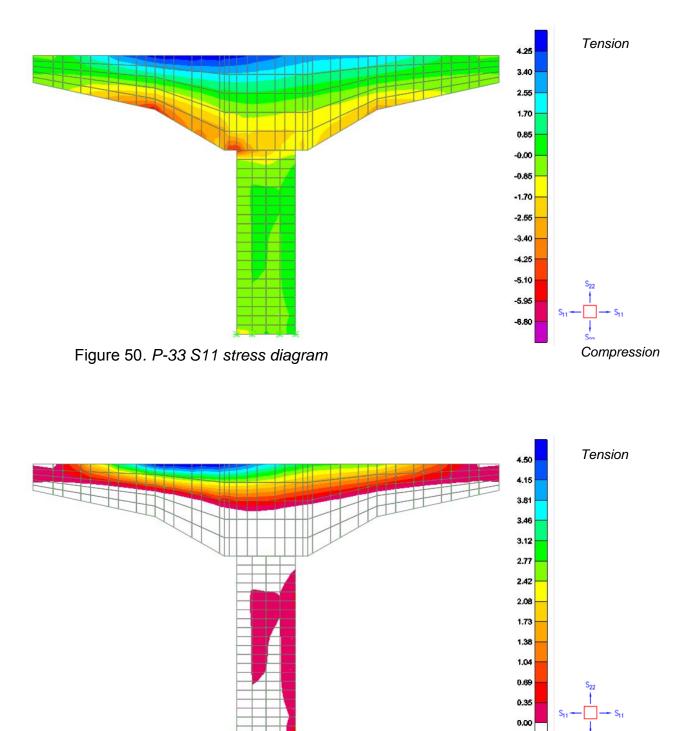


Figure 51. P-33 S11 tension stress

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Figure 52. P-33 S22 stress diagram

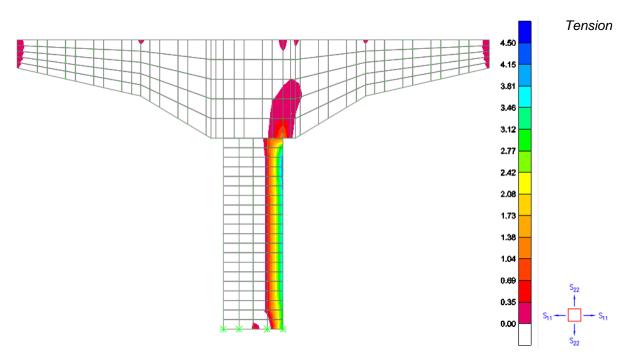
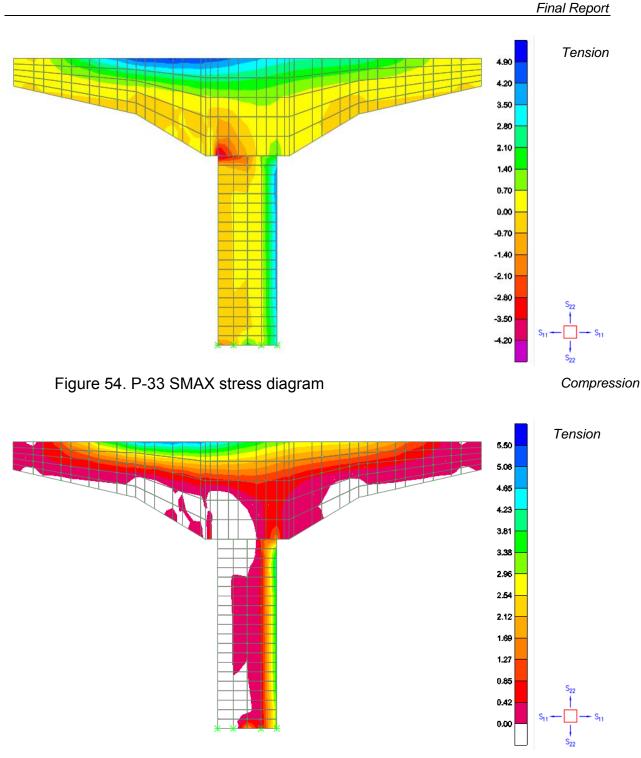
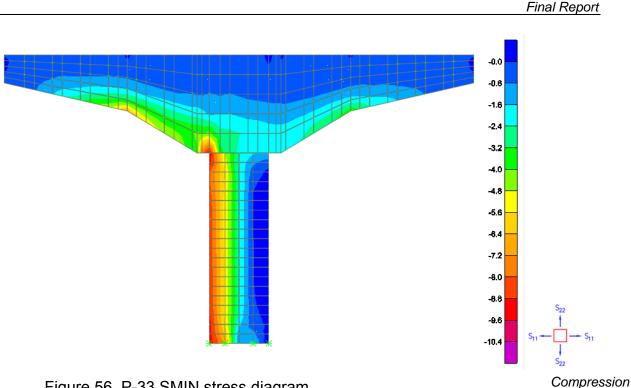




Figure 53. P-33 S22 tension stress diagram

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Figure 55. P-33 SMAX tension stress diagram

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port -North Port, Selangor Darul Ehsan.

Figure 56. P-33 SMIN stress diagram

anchorage length to cater for the tension stresses.

Based on Figure 53, it is shown that the S22 tension stress extends approximately 2.1m from the top of the pier into the crosshead. Therefore, it would be suggested that the pier main reinforcement should be extended up for a minimum of 0.6 depth of the crosshead followed by the tension

9.5. Summary of Design Review for P-33

(a) The pier ultimate capacity (ULS) and crack width (SLS) check is summarized as below.

Table 73. 1-35 – Summary of pier BES moment capacity					
	Ultimate Moment Capacity (kN.m)				
Pier Type	3 Notional Lanes (BD37/88)	2 Notional Lanes (BD37/88)	3 Notional Lanes (JKR MTAL)		
P1-A (P-33)	O.K	-	-		

Table 73. P-33 – Summary of pier ULS moment capacity

Table 74. P-33 Summary of pier SLS crack width

	Crack Width (mm)			
Pier Type	3 Notional Lanes (BD37/88)	2 Notional Lanes (BD37/88)	3 Notional Lanes (JKR MTAL)	
P1-A (P-33)	0.100	-	-	

Based on the checking, the existing pier column design satisfied the ULS and SLS criteria.

(b) The crosshead ultimate moment capacity (ULS) check is summarized as below.

Ult. Moment C	apacity (kN.m)	Maximum LILS	Capacity Ratio
Without Sidebar	With Sidebar	Moment (kN.m)	
59,830	65,605	49,396	0.83
	Without Sidebar		Without Sidebar With Sidebar Moment (kN.m)

*Capacity ratio is based on Maximum ULS Moment / Ult. Moment Capacity (without sidebar)

The checking shows that the existing design of crosshead satisfies the ULS criteria.

(c) The crosshead ultimate shear capacity (ULS) check is summarized as below.

Table 76. P-33 – Summary of crosshead ULS shear capacity BD 37/88 (3 Notional Lanes) @ 2.0m Depth

Load Case	Asv/sv regid	Asv/sv prov	Capacity Ratio
ULS1C1	7.87	8.04	0.98
ULS2C1	6.58	8.04	0.82
ULS3C1	7.87	8.04	0.98
ULS4C1	7.73	8.04	0.96

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

BD 37/88 (3 Notional Lanes) @ 3.5m Depth

Load Case	Asv/sv _{req'd}	Asv/sv prov	Capacity Ratio
ULS1C1	7.81	8.04	0.97
ULS2C1	6.66	8.04	0.83
ULS3C1	6.62	8.04	0.82
ULS4C1	7.85	8.04	0.98

*Capacity ratio is based on Asv/sv regid / Asv/sv prov

The checking shows that the existing shear capacity design of the crosshead is adequate at ULS.

(d) The crosshead crack width (SLS) check is summarized as below.

	3 Notional Lanes (BD 37/88)				
	Crack Width (mm)				
Crosshead Type	Without Sidebar	With Sidebar			
P1-A (P-33)	0.130	0.110			

Table 77. P-33 – Sur	mmary of crosshead	SLS crack width
----------------------	--------------------	-----------------

The checking shows that the existing design of the crosshead satisfies the SLS criteria of 0.25mm crack width.

(e) The following table shows the comparison of ULS design between conventional beam theory and STM.

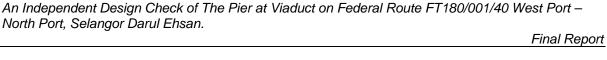

Element Force	Conventional Beam Theory	STM
Bending Moment, As _{req'd}	3 x 20T32	2 x 20T32
Shear Force, Asv _{req'd}	3T16-150	3T16-150

Table 78. P-33 Conventional beam theory vs. STM

Based on the comparison, it is found that the reinforcement required the resist the bending moment by using STM method is less than the conventional beam theory method. The required shear link to resist the shear force is found to be similar between STM method and conventional beam theory method.

(f) Based on Figure (54), the pier column main vertical reinforcement of 2xT32-150 are terminated slightly over the mid depth of the crosshead without 90° anchorage bent.

From Figure (43) & (45) of the STM analysis, the vertical ultimate tension of 7,157kN on the tension tie member (Node 110 to 210) extends from the bottom compression strut to the top tension tie. Although, the reinforcement provided in the pier column tension zone of 2x30T32 and 3T16-150 of crosshead links is sufficient to resist the tension tie force, but they don't have sufficient anchorage length into the nodal zone to satisfy STM design philosophy.

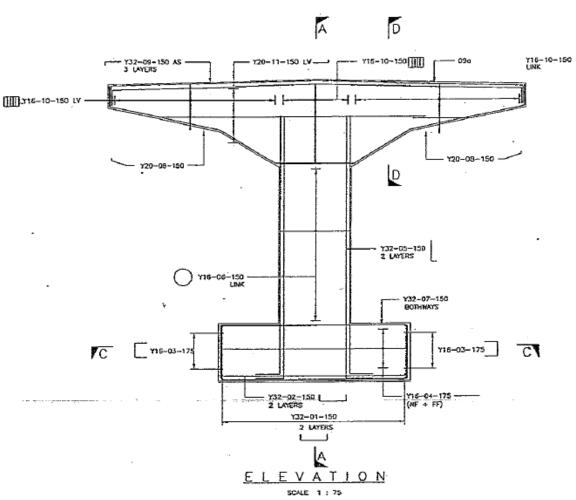


Figure 57. P-33 as-built detailing

Moreover, from Figure (50) of the FEM analysis, the crosshead S22 tension stress is found to extend into crosshead about 2.1m from top of pier column (i.e. soffit of crosshead). Therefore, it is essential that the main column reinforcement should extend up to the top of crosshead and followed by a bend for another minimum tension anchorage length beyond the tension zone.

(g) It is found that the conventional method of analysis does not capture the tensile stress in the crosshead as compared to STM or FEM analysis. This is due to the conventional method assumes the crosshead and pier column as frame elements connected at the centroid of the respected elements. Therefore, it is recommended to perform STM and FEM analysis to investigate and capture the behaviour of deep crosshead.

10. CONCLUSION

A design review has been carried out for the affected Pier P-11A (Type P1-C), P-25 (Type P1-A) and P-33 (Type P1-A). The affected pier and crosshead designs are checked based on the available as built drawings. Three (3) independent analytical models were established based on BD 37/88, JKR SV20 and JKR MTAL traffic live load criteria to determine the maximum induced forces acting on the structures.

The following table summarized the different traffic live load analysis for this study.

	BD 37/88			JKR MTAL
Pier Type	3 Notional Lanes	2 Notional Lanes	SV20	(3 Notional Lanes)
P1-C (P-11A)	\checkmark	\checkmark	\checkmark	\checkmark
P1-A (P-25)	\checkmark		\checkmark	
P1-A (P-33)			\checkmark	

Table 79. Summary of traffic live load analysis

10.1. Pier Column Check

The pier ultimate capacity (ULS) and crack width (SLS) check is summarized as follows:-

Table 80. Summary of pier ULS moment capacity

	Ultimate Moment Capacity (kN.m)					
Pier Type	3 Notional Lanes (BD37/88)	2 Notional Lanes (BD37/88)	3 Notional Lanes (JKR MTAL)			
P1-C (P-11A)	O.K	O.K	O.K			
P1-A (P-25)	O.K	-	-			
P1-A (P-33)	O.K	-	-			

	Crack Width (mm)		
Pier Type	3 Notional Lanes (BD37/88)	2 Notional Lanes (BD37/88)	3 Notional Lanes (JKR MTAL)
P1-C (P-11A)	0.416	0.370	0.398
P1-A (P-25)	0.087	-	-
P1-A (P-33)	0.100	-	-

Table 81. Summary of pier SLS moment capacity

The maximum ultimate load acting on the pier columns are within the ultimate capacity of the structure. Therefore, the existing design of the pier columns satisfies the ULS criteria.

The pier column crack width calculated for P-25 and P-33 is less than 0.25mm, which satisfies the SLS criteria. However, the crack widths for P-11A under 3 different load conditions are found to be more than 0.25mm. Hence, the existing design of P-11A doesn't fulfill the SLS criteria.

Hence, remedial work shall be implemented for all inverted "L" shape pier columns in order to enhance the durability of the structure, especially against the corrosion of the main pier column reinforcement.

10.2. Crosshead Check

The crosshead ultimate moment capacity (ULS) check is summarized as follows;

	Ult Moment Capacity (kN.m)		3 Notional Lanes (BD 37/88)		
Crosshead Type	On Moment Capacity (KN.m)				
Crossnead Type	Without Sidebar	With Sidebar	Maximum ULS Moment (kN.m)		
P1-C (P-11A)	24,439	26,069	25,805		
P1-A (P-25)	59,830	65,605	53,530		
P1-A (P-33)	<mark>59,830</mark>	65,605	49,396		

Table 82. Summary of crosshead ULS moment capacity

	Ult Moment Capacity (kN.m)		2 Notional Lanes (BD 37/88)	
Crosshead Type			Maximum ULS Moment (kN.m)	
Crossnead Type	Without Sidebar	With Sidebar		
P1-C (P-11A)	24,439	26,069	24,442	
P1-A (P-25)	-	-	-	
P1-A (P-33)	-	-	-	

	Ult Moment Capacity (kN.m)		JKR MTAL Criteria	
Crosshead Type				
Crossnedd Type	Without Sidebar	With Sidebar	Maximum ULS Moment (kN.r	
P1-C (P-11A)	24,439	26,069	25,173	
P1-A (P-25)	-	-	-	
P1-A (P-33)	-	-	-	

The crosshead ultimate shear capacity (ULS) check is summarized as follows;

Table 83. Summary of crosshead ULS shear capacity

P-11A Crosshead ULS Shear Check

BD 37/88	(3 Notional Lanes)	@ 2.5m Depth
DD 37/00	(S Notional Lanes)	@ 2.5m Depm

Asv/sv regid	Asv/sv prov	Capacity Ratio
7.72	8.04	0.96
7.28	8.04	0.90
6.96	8.04	0.87
7.71	8.04	0.96
	7.72 7.28 6.96	7.72 8.04 7.28 8.04 6.96 8.04

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

BD 37/88 (2 Notional Lanes) @ 2.5m Depth

Load Case	Asv/sv _{req'd}	Asv/sv _{prov}	Capacity Ratio
ULS1C1	6.90	8.04	0.86
ULS2C1	6.64	8.04	0.83
ULS3C1	6.94	8.04	0.86
ULS4C1	7.70	8.04	0.96

*Capacity ratio is based on Asv/sv req'd / Asv/sv prov

JKR MTAL @ 2.5m Depth

Load Case	Asv/sv _{req'd}	Asv/sv _{prov}	Capacity Ratio
ULS1C1	7.57	8.04	0.94

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

P-25 Crosshead ULS Shear Check

BD 37/88 (3 Notional Lanes) @ 2.0m Depth

Load Case	Asv/sv _{req'd}	Asv/sv prov	Capacity Ratio
ULS1C1	8.46	8.04	1.05
ULS2C1	7.19	8.04	0.89
ULS3C1	7.98	8.04	0.99
ULS4C1	8.44	8.04	1.05

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

BD 37/88 (3 Notional Lanes) @ 3.5m Depth

Load Case	Asv/sv _{req'd}	Asv/sv prov	Capacity Ratio
ULS1C1	7.60	8.04	0.94
ULS2C1	6.57	8.04	0.82
ULS3C1	6.74	8.04	0.84
ULS4C1	7.97	8.04	0.99

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

P-33 Crosshead ULS Shear Check

BD 37/88 (3 Notional Lanes) @ 2.0m Depth

Load Case	Asv/sv _{req'd}	Asv/sv _{prov}	Capacity Ratio
ULS1C1	7.87	8.04	0.98
ULS2C1	6.58	8.04	0.82
ULS3C1	7.87	8.04	0.98
ULS4C1	7.73	8.04	0.96

*Capacity ratio is based on Asv/sv regid / Asv/sv prov

BD 37/88 (3 Notional Lanes) @ 3.5m Depth

Load Case	Asv/sv regid	Asv/sv prov	Capacity Ratio
ULS1C1	7.81	8.04	0.97
ULS2C1	6.66	8.04	0.83
ULS3C1	6.62	8.04	0.82
ULS4C1	7.85	8.04	0.98

*Capacity ratio is based on Asv/sv reg'd / Asv/sv prov

The crosshead crack width (SLS) check is summarized as follows;

	3 Notional Lanes (BD 37/88)				
Crosshead Type	Crack W	idth (mm)			
Crossnead Type	Without Sidebar	With Sidebar			
P1-C (P-11A)	0.270	0.255			
P1-A (P-25)	0.138	0.115			
P1-A (P-33)	0.130	0.110			

Table 84. Summary of crosshead SLS crack width check

	2 Notional Lanes (BD 37/88)				
Crosshead Type	Crack W	idth (mm)			
Crossnedd Type	Without Sidebar	With Sidebar			
P1-C (P-11A)	0.196	0.181			
P1-A (P-25)	-	-			
P1-A (P-33)	-	-			

	3 Notional Lanes (JKR MTAL)				
Crosshead Type	Crack W	idth (mm)			
Clossnead Type	Without Sidebar	With Sidebar			
P1-C (P-11A)	0.252	0.238			
P1-A (P-25)	-	-			
P1-A (P-33)	-	-			

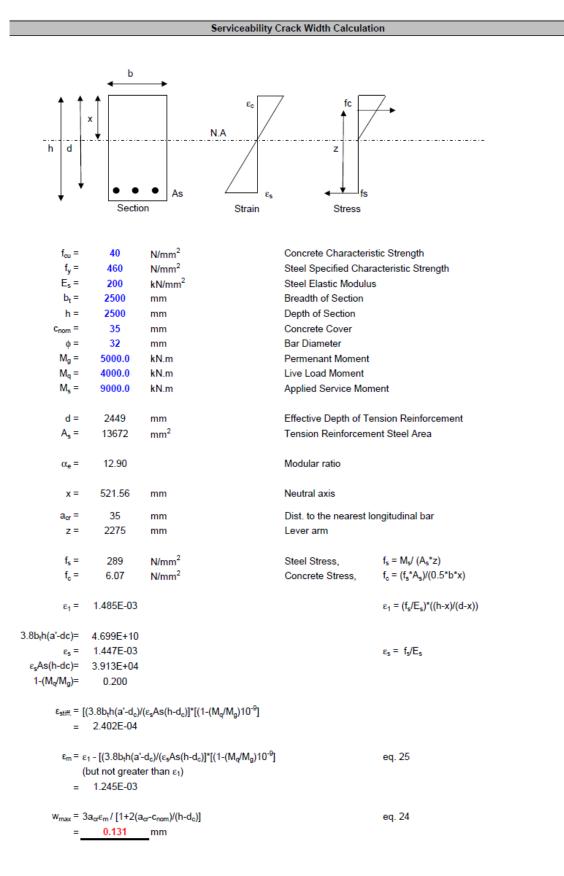
The maximum ultimate moment acting on P-25 and P-33 crossheads is within the ultimate capacity of the structure. Therefore, the existing design of the piers satisfies the ULS moment capacity criteria. In the other hand, the maximum ultimate moment acting on P-11A crosshead is only satisfactory when side reinforcement is taken into account in the ultimate capacity calculation of the crosshead.

The maximum ultimate shear acting on P-11A and P-33 crossheads is within the ultimate capacity of the structure. Therefore, the existing design of the piers satisfies the ULS moment capacity criteria. In the other hand, the maximum ultimate shear acting on P-25 crosshead exceeded the shear capacity of the crosshead for load case ULS1C1 (HA+KEL) and ULS4C1 (SV20)

P-11A and P-33 STM indicates that sufficient top reinforcement has been provided to resist the crosshead ULS tensile force. The resultant compressive stress at the bottom compression strut is found to be less than the strength limit and the diagonal strut force is calculated to be less than the capacity. The vertical tensile force of P-11A is found to exceed the shear capacity calculated from the existing shear link provided. However, the vertical tensile force of P-33 is within the shear capacity calculated from the existing shear link provided.

Crack widths calculated for P-25 and P-33 crosshead are within the allowable limit of 0.25mm, which satisfies the SLS criteria. The crack width for P-11A only satisfies the allowable limit under BD 37/88 two (2) notional lane criteria. When checked against BD 37/88 three (3) notional lane criteria, the crack width is found to exceed the allowable 0.25mm limit. Under load combination with JKR MTAL, the crack width only satisfies the allowable limit when side reinforcement is considered in the crack width calculation.

11. APPENDIX A – CRACK WIDTH VERIFICATION


PROJECT :<u>Port Klang Bridge Design Audit</u> TITTLE : <u>Crack Width Calculation Verification</u>

CRACK WIDTH DESIGN TO B\$5400-4:1990 (AXIAL & FLEXURAL)

				& FLEXURAL)						
)onian Dor	amotora			*cl.4.2.2 Crack width check applies only for Loa	ad Combina	tion 1				
esign Para	ameters									
f _{cu} =	40	N/mm ²		: Characteristic cube strength at 2	8 davs					
E c =	3.10E+07			: Short term modulus of elasticity	-	ete				
Φ=	2.00			: Creep coefficient						
E _{cl} =	1.55E+07	kN/m ²		: Long term modulus of elasticity	of conci	rete (all	owed for c	reep eff	ect)	
f -	460	N/mm ²		: Steel Yield Strength						
f _y = Es=	2.00E+08			: Modulus of elasticity of rebar						
α=	12.90	KIN/III		: Long term ratio Es/EcL			Section G	eometry		
_							x (n			
					-2	2000		0		2000
eutral Axis	s (Elastic Analysis	3)					, i			
eutral Axi	s, Yn = Σ(A*Yi)/ΣA						500 -			
	-,(,									
ΣAc=	1,303,899	mm ²		: Area of concrete			1000 -			
ΣAs=	176,416	-		: Transformed area of rebar	e					
Σ A=	1,480,315	mm ²		: Gross area	y (mm)		1500 -			
Err(x)=	0.0	RE ITE	RATE	: $Err(Yn) = \Sigma(A^*Yi) \cdot Yn^*\Sigma A$	~					
V.	504.50	_					2000 -			
Yn=	521.56	mm					2500			
							2000			
rack Widtl	h Calculation (BS	5400, cl. 5.8.8	3. <u>2)</u>				3000 -			
$P_g =$	0	kN		: Permanent Axial Force; (-) compress	ion					
$M_g =$	5000	kN-m		: Permanent moment	ion					
M _g = M _g =	5000 4000	kN-m kN-m		: Permanent moment : Live load moment	ion					
M _g = M _q = M _s =	5000 4000 9000	kN-m kN-m kN-m		: Permanent moment : Live load moment : Applied SLS moment	ion					
M _g = M _q = M _s = h=	5000 4000 9000 2500	kN-m kN-m kN-m mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section		Part 4 .tz	oble (13)			
M _g = M _q = M _s = h= C _{nom=}	5000 4000 9000 2500 35	kN-m kN-m kN-m mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per	BS5400, F			est reha	r	
$M_g = M_q = M_s = h = C_{nom=} a_{cr} =$	5000 4000 9000 2500 35 35	kN-m kN-m kN-m mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered (BS5400, F			est rebai	r	
$M_{g} = M_{g} = M_{g} = M_{s} = h = C_{nom} = a_{cr} = \epsilon_{m} = \epsilon_{m} = k_{m}$	5000 4000 9000 2500 35	kN-m kN-m kN-m mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per	BS5400, F			est rebai	r	
M _g = M _q = M _s = h= C _{nom=} a _{αr} =	5000 4000 9000 2500 35 35 1.24E-03	kN-m kN-m kN-m mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered	BS5400, F (x,y) to the			est rebai	r	
$M_{g} = M_{q} = M_{g} = M_{s} = h = C_{nom} = a_{cr} = \varepsilon_{m} = \varepsilon_{c} = \varepsilon_{stm} = \varepsilon_{$	5000 4000 2500 35 35 1.24E-03 0.00E+00	kN-m kN-m kN-m mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load	BS5400, F (x,y) to the			est rebai	r	
$M_{g}^{g} = M_{q} = M_{g} = M_{s} = h = C_{nom} = a_{cr} = \varepsilon_{m} = \varepsilon_{c} = \varepsilon_{stm} =$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04	kN-m kN-m kN-m mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect	BS5400, F (x,y) to the		e of the near		r	
$M_{g} = M_{q} = M_{g} = M_{s} = h = C_{nom} = a_{cr} = \varepsilon_{m} = \varepsilon_{c} = \varepsilon_{stm} = \varepsilon_{$	5000 4000 9000 2500 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location	kN-m kN-m kN-m mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Anitial strain due to axial load : Strain due to tension stiffening effect	BS5400, F (x,y) to the				r	
$M_{g} = M_{q} = M_{g} = M_{s} = h = C_{nom} = a_{cr} = \varepsilon_{m} = \varepsilon_{c} = \varepsilon_{stm} = \varepsilon_{$	5000 4000 9000 2500 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01	kN-m kN-m kN-m mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect	BS5400, F (x,y) to the		e of the near		88	400
$M_{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom=} = a_{cr} = \varepsilon_{m} = \varepsilon_{e} = \varepsilon_{eltm} =$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm)	kN-m kN-m mm mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Anitial strain due to axial load : Strain due to tension stiffening effect	BS5400, F (x,y) to the		e of the near Rebar Stre	988		L 400
$M_{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom=} = a_{cr} = \varepsilon_{m} = \varepsilon_{e} = \varepsilon_{eltm} =$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm)	kN-m kN-m mm mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect	BS5400, F (x,y) to the		Rebar Stre	988		L 400
$M_{g} = M_{g} = M_{g} = M_{g} = M_{g} = 0$ $M_{g} = M_{g} = 0$ $M_{g} = 0$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm)	kN-m kN-m mm mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect	BS5400, F (x,y) to the		e of the near Rebar Stre	988		L400
$M_{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom=}$ $a_{cr} = \varepsilon_{m} = \varepsilon_{e} = \varepsilon$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E+04 2.00E-01 Rebar Location x (mm) 0	kN-m kN-m mm mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect	BS5400, F (x,y) to the		Rebar Stre	988		L400
$M_{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom=}$ $a_{cr} = \varepsilon_{m} = \varepsilon_{e} = \varepsilon$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E+04 2.00E-01 Rebar Location x (mm) 0	kN-m kN-m mm mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect	BS5400, F (x,y) to the		Rebar Stre	988		_ 400
$M_{g}^{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom=}$ $a_{cr} = \varepsilon_{m} = \varepsilon_{o} = \varepsilon_{o} = \varepsilon_{starr} = $	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm) 0	kN-m kN-m mm mm mm	-0004	: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect Strain Strain Concrete Concrete	BS5400, F (x,y) to the t		Rebar Stre	988		- 400
$M_{g}^{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom=}$ $a_{cr} = \varepsilon_{m} = \varepsilon_{o} = \varepsilon_{o} = \varepsilon_{starr} = \varepsilon_{tarr} = \varepsilon_{tarr}$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm) 0	kN-m kN-m mm mm mm	-0004	: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect Strain Strain Concrete Concrete	BS5400, F (x,y) to the		Rebar Stre	988		- 400
$M_{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom=}$ $a_{cr} = \varepsilon_{m} = \varepsilon_{e} = $	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm) 0 500 - 1000 -	kN-m kN-m mm mm mm		: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect Strain Strain Strain O Strain O Strain O O O O O O O O	BS5400, F (x,y) to the t		Rebar Stre 500 - 1000 -	988		- 400
$M_{g}^{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom} = a_{cr} = \varepsilon_{cn} = -M_{q}/M_{g} = -2000$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm) 0 500 - 1000 -	kN-m kN-m mm mm mm	-0004	: Permanent moment : Live load moment : Applied SLS moment : Overall depth of section : Nominal concrete clear cover as per : Distance from the point considered : Average strain at point considered : Initial strain due to axial load : Strain due to tension stiffening effect Strain Strain Strain O Strain O Strain O O O O O O O O	BS5400, F (x,y) to the t		Rebar Stre 500 - 1000 -	988		- 400
$M_{g}^{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom=}$ $a_{cr} = \varepsilon_{m} = \varepsilon_{o} = \varepsilon_{o} = \varepsilon_{starr} = \varepsilon_{tarr} = \varepsilon_{tarr}$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm) 0 500 - 1000 - 1500 -	kN-m kN-m mm mm mm	-0004	 Permanent moment Live load moment Applied SLS moment Overall depth of section Nominal concrete clear cover as per Distance from the point considered (Average strain at point considered Initial strain due to axial load Strain Strain Strain 0 	BS5400, F (x,y) to the t		Rebar Stre 8 500 1000 1500	988		- 400
$M_{g}^{g} = M_{g} = M_{g} = M_{g} = M_{g} = C_{nom} = a_{cr} = \varepsilon_{cn} = -M_{q}/M_{g} = -2000$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm) 0 500 - 1000 - 1500 -	kN-m kN-m mm mm mm	-0004	 Permanent moment Live load moment Applied SLS moment Overall depth of section Nominal concrete clear cover as per Distance from the point considered (Average strain at point considered Initial strain due to axial load Strain Strain Strain 0 	BS5400, F (x,y) to the t		Rebar Stre 8 500 1000 1500	988		- 400 -
$M_g = M_q = M_g = M_g = M_g = C_{nome}$ $a_{cr} = \epsilon_{cr} = \epsilon_{etr.} = \epsilon_{etr.} = -MqMg) = -2000$	5000 4000 2500 35 35 1.24E-03 0.00E+00 -2.40E-04 2.00E-01 Rebar Location x (mm) 0 500 - 1000 - 1500 - 2000 -	kN-m kN-m mm mm mm	-0004	 Permanent moment Live load moment Applied SLS moment Overall depth of section Nominal concrete clear cover as per Distance from the point considered (Average strain at point considered Initial strain due to axial load Strain Strain Strain 0 	BS5400, F (x,y) to the t		Rebar Stre 8 500 1000 1500 2000	988		- 400

l	Location	To Nearest Rebar								
x	y = a'	хг	yr	ø	a _{cr}	ε,	٤٥	E stiff.	ε"	W _{max}
(mm)	(mm)	(mm)	(<i>mm</i>)	(mm)	(<i>mm</i>)					(mm)
0	0	0	0	0	0	-3.91E-04	0.00E+00	0.00E+00	-3.91E-04	uncracked
0	0	0	0	0	0	-3.91E-04	0.00E+00	0.00E+00	-3.91E-04	uncracked
0	0	0	0	0	0	-3.91E-04	0.00E+00	0.00E+00	-3.91E-04	uncracked
0	0	0	0	0	0	-3.91E-04	0.00E+00	0.00E+00	-3.91E-04	uncracked
0	0	0	0	0	0	-3.91E-04	0.00E+00	0.00E+00	-3.91E-04	uncracked
0	2500	0	2449	32	35	1.48E-03	0.00E+00	-2.40E-04	1.24E-03	0.131

Crack Width Verification (BS 5400)

12. APPENDIX B – PROPOSED REMEDIAL WORK

12.1. Pier Type P1-C (Inverted "L" Pier)

12.1.1 Pier Column

Remedial work using flexible coatings are proposed for inverted pier (Type P1-C) i.e. P-10A, 11A, 12A, 13B, 14B and 15B (Total 6 nos.) to fulfil the Serviceability Limit State (SLS) requirement.

Base on the as-built information, there are 17 nos. of inverted "L" for the existing elevated bridge. Namely,

7A, 8A, 9A, 10A, 11A, 12A, 13A, 14A (8 nos.) 8B, 9B, 10B, 11B, 12B, 13B, 14B, 15B, 16B (9 nos.)

In order to prevent deterioration of structure due to ingress of water and rebar corrosion due to the excessive design crack widths, some flexible coatings shall be used. All cracks to be sealed and apply two coats of polymer-modified cementitious waterproofing coating (SIKA Top Seal 109 MY) which has good crack bridging capacity up to 1.0mm. This flexible coating shall have the ability to accommodate the future cracks induced. However, it has limited life span.

12.1.2 Crosshead

Carbon fibre plate is proposed to strengthen the region where the main pier column reinforcement anchorage length into the crosshead is insufficient. A combination of $(3 \times 3 \times 3 \text{ layers}) + (3 \times 3 \times 3 \text{ layers}) + (3 \times 3 \times 3 \text{ layers}) + (3 \times 3 \times 3 \text{ layers})$ Sika CarboDur S1012 is to be applied on each side of the crosshead. The detailed calculation for the proposed strengthening work is shown as below.

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

Final Report

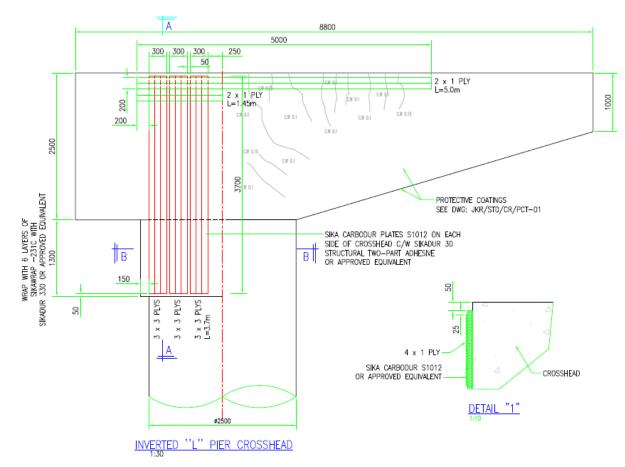


Figure 58. FRP Strengthening for Crosshead Type P1-C (Anchorage)

Width	=	100	mm
Thickness	=	1.2	mm
φ Tensile	=	0.60	
Min. Tensile Strength	=	2,800	MPa
Τυ	=	10,685	kN
A _{s,req}	=	6,360	mm ²
	= _	53	strips
	_		-
A _{s,prov}	= _	54	strips

The optimal bond length for the plate is calculated based on "Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures" published by the National Research Council advisory committee on technical recommendations for constructions, 2004.

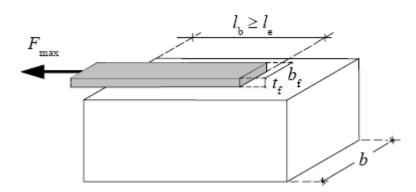


Figure 59. Optimal bond length, I_e

E_{f}	=	165,000	MPa	(Young modulus of elasticity)
tf	=	3* 1.2	mm	
f _{ctm}	=	2.0	MPa	(average tensile strength of concrete)
1 _e	=	$[(E_f.t_f)/(2.$	f_{ctm})] ^{0.5}	
	=	385	mm	

Based on Figure 39, it is shown that tensile stress S22 extends up to approximately 0.8 depth of the crosshead. This resulted in approximately 2000mm depth of tensile zone and 500mm depth of compression zone. Therefore, the calculated 385mm bond length is sufficiently bonded in the 500mm compression zone. The average tensile strength of concrete is to be verified by Tensile Pull Off Test on site.

6 layers of carbon fibre wrap using SikaWrap - 231C are introduced at the top of pier where the bottom of carbon fibre plate is anchored to resist the tensile force resulting from the carbon fibre plate.

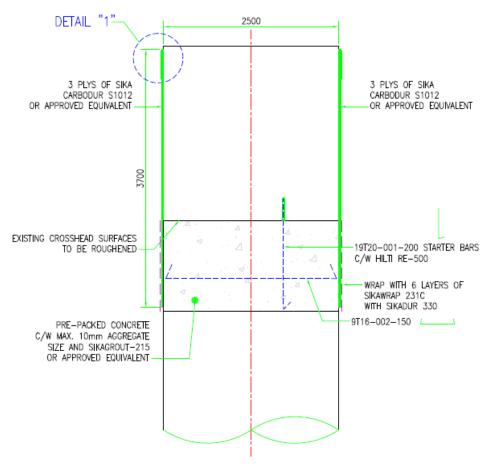


Figure 60. Carbon Fibre Wrap Type P1-C

T_u= 10,685 kN T_u/2= 5.343 kN Spread angle = 45 degrees 5,343 kN H= Tensile Strength= 4,900 N/mm2 Thk= 0.127 mm Tu= 420 kN/m (Recommended by SIKA) Width of Wrapping= 1.25 m No. of Layer Required= 5.09 (Use 6 layers)

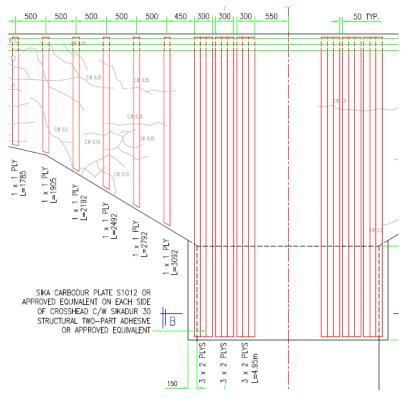
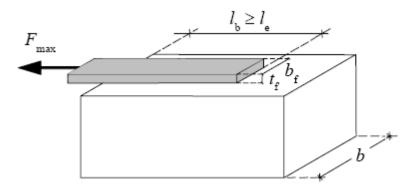
12.2. Pier Type P1-A ("T" Pier)

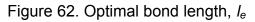
12.2.1 Pier Column

No strengthening work is required for "T" shaped Pier; P-25 and P-33 (Type P1-A). However, it is recommended that a layer of protective coating to be applied on the pier columns. As cracks were observed at surface, all cracks to be sealed and surfaces shall apply two coats of polymer-modified cementitious waterproofing coating (SIKA Top Seal 109 MY) which has good crack bridging capacity up to 1.0mm.

12.2.2 Crosshead

Carbon fibre plate is proposed to strengthen the region where the main pier column reinforcement anchorage length into the crosshead is insufficient. A combination of $(3 \times 3 \times 2 \text{ layers}) + (3 \times 3 \times 2 \text{ layers}) + (3 \times 3 \times 2 \text{ layers}) + (3 \times 3 \times 2 \text{ layer})$ Sika CarboDur S1012 is to be applied on each side of the crosshead. The detailed calculation for the proposed strengthening work is shown as below.


Figure 61. FRP Strengthening for Crosshead Type P1-A (Anchorage)

Width Thickness	=	100 1.2	mm mm
∳ Tensile Min. Tensile Strength		0.60 2,800	MPa
Τ _υ	=	7,157	kN
$A_{s,req}$	=	4,260 <mark>36</mark>	mm ² strips
A _{s,prov}	=	36	strips

Crosshead Anchorage using Sika CarboDur Plate S1012

The optimal bond length for the plate is calculated based on "Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures" published by the National Research Council advisory committee on technical recommendations for constructions, 2004.

Ef	=	165,000	MPa	(Y
t _f	=	2* 1.2	mm	
f _{ctm}	=	2.0	MPa	(a

(Young modulus of elasticity)

(average tensile strength of concrete)

$$I_e = [(E_f.t_f)/(2.f_{ctm})]^{0.5}$$

= 315 mm

Based on Figure 53, it is shown that tensile stress S22 extends up to approximately 0.6 depth of the crosshead. This resulted in approximately 2100mm depth of tensile zone and 1400mm depth of compression zone. Therefore, the calculated 315mm bond length is sufficiently bonded in the 1400mm compression zone. The average tensile strength of concrete is to be verified by Tensile Pull Off Test on site.

4 layers of carbon fibre wrap using SikaWrap – 231C are introduced at the top of pier where the bottom of carbon fibre plate is anchored to resist the tensile force resulting from the carbon fibre plate.

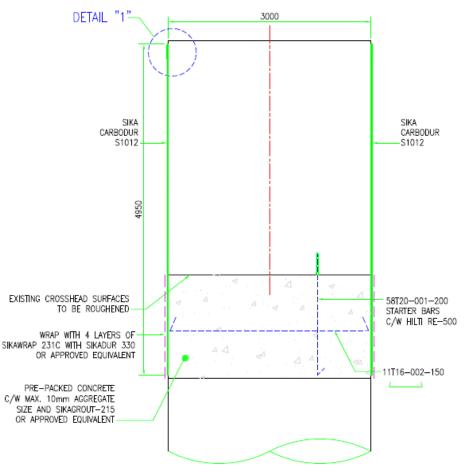


Figure 63. Carbon Fibre Wrap Type P1-A

An Independent Design Check of The Pier at Viaduct on Federal Route FT180/001/40 West Port – North Port, Selangor Darul Ehsan.

T_u= 7,157 kN T_u/2= 3578.5 kN Spread angle = 45 degrees 3578.5 kN H= Tensile Strength= 4,900 N/mm2 Thk= 0.127 mm T_u= 420 kN/m (Recommended by SIKA) Width of Wrapping= 1.5 m No. of Layer Required= 2.84 (Use 4 layers)

For the shear strengthening at crosshead depth of 2.0m, nine (9) strips of Sika CarboDur S1012 at 500mm spacing is proposed at each face of the crosshead. The detailed calculation for the proposed strengthening work is shown as below.

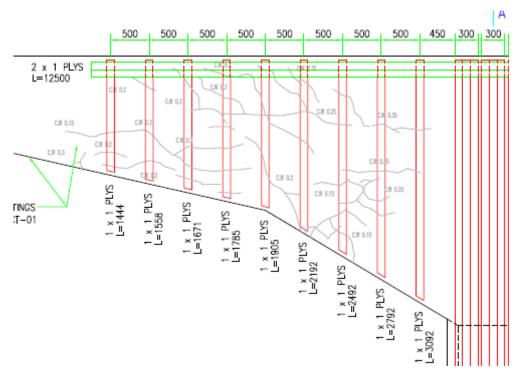


Figure 64. FRP Strengthening for Crosshead Type P1-A (Shear)

Final Report

Crosshead Shear Strengthening using Sika CarboDur Plate S1012

f _{cu} =	40	MPa	(28 days concrete cube compressive strength)
f' _c =	32	MPa	(28 days concrete cylinder compressive strength)
f _y =	460	MPa	(yield strength of shear steel)
b _w =	3000	mm	(width of beam)
h =	2000	mm	(depth of beam)
d =	1854	mm	(distance to flexural steel)
h _c =	1044.7	mm	(distance from tension face to neutral axis)
A _s =	48240	mm ²	(area of flexural steel)
A _v =	1206	mm ²	(area of shear steel)
V _U =	6590	kN	(ultimate shear force)
Vu =	6275	kN	(ultimate shear capacity)

Strengthening of the section (Using modified USD approach)

Required $\phi_L V_L =$		kN
Product =	Sika CarboDur	S1012
θ =	45	degrees to shear crack
E _t =	165000	MPa
F _{tu} =	2800	MPa
t_ =	1.2	mm
ε _L =	0.004	mm/mm
s _L =	500	mm
b_ =	100	mm (width of laminate strip)
L _b =	100	mm (effective bond length of each FRP anchorage areas; lesser of the length of FRP reinforcing that extends into the compression zone of beam and 100mm)

Required nominal shear strength

 $\phi_L V_L = 315.0 \text{ kN}$

Check Nominal Shear Strength based on Concrete Bond Strength

$\phi_{Lc} =$	0.5								
	0.91(f ^r c) ^{0.5} 5.15	MPa							
A _b =	h _c cotθL _b 104470)						
A _b =	(b _L /s _L)h _c cotθL _b 20894		nate strips)						
	φ _{Lc} 2V _b A _b 537.8	kN	>	315.0	(2.3.3) kN	0.К			
Check Nominal Shear Strength based on Tensile Strength									
φ _L =	0.45								
	φ∟2f _{Lu} t∟h _c cotθ 3159.2		(for wrap) >	315.0	(2.3.4) kN	0.К			
φ _L =	0.6								
φ _L V _L =	φ _L 2f _{Lu} t _L (b _L /s _L)h _c / 842.4		(for laminate >	strips) 315.0		0.К			
Check Nominal Shear Strength based on Shear Strength of Sidakur Epoxy									

¢ _{La} f _{fa} ∶		0.40 24.80	MPa	(ultimate sh	ear streng	th of epoxy res	in adhesive)
$\phi_{La}V_{L}$	=	ф _{La} 2А _b f _{fa} 2072.7	kN	>	315.0	(2.3.6) kN	0.К

PRODUCT DATA SHEET AND RELEVANT INFORMATION