ASSIMULABLE ORGANIC CARBON AND BACTERIAL REGROWTH IN TREATED WATER SUPPLY

BY

OTHMAN JAAFAR

UNIVERSITY OF NEWCATLE

SEPTEMBER 1991

.98

ASSIMILABLE ORGANIC CARBON AND BACTERIAL REGROWTH IN TREATED WATER SUPPLY

A Dissertation submitted to the University of Newcatle Upon Tyne Depatrment of Civil Engineering Environmental Engineering Group

Othman Jaafar

By

In fulfillment of the requirement for the Degree of Master of Science

September 1991

Recovery of injured or dormant bacteria was identified to be the main cause of bacterial regrowth in the main supply lines. While detachment of biofilm from surfaces of service connections and internal plumbing systems may have resulted in high culturable bacterial counts in some samples.

No correlation can be established between bacterial regrowth or assimilable organic carbon concentration with distribution system characteristic (location, pipe age and pipe materials).

TITLE: ASSIMILABLE ORGANIC CARBON AND BACTERIAL REGROWTH IN TREATED WATER SUPPLY.

TABLE OF CONTENTS	Page
ABSTRACT	
TITLE PAGE	
LISTS OF TABLES	1
ACKNOWLEDGEMENT	2
Chapter 1: LITERATURE REVIEW	3
1.1 Defination of Terms	3
1.2 Introduction	5
1.3 Bacteria in Water Distribution	8
System	10
1.3.1 Microscopic evidence of regrowth in water supplies	9
1.3.2 Cultural evidence of regrowth in water supplies	10
1.4 Problems Related With Microbial Activity in Distribution Systems	13
1.4.1 The likely presence of pathogens	14
1.4.2 Interference with coliform testing	15
1.4.3 Tastes and odours	16
1.4.4 Discoloration	18
1.4.5 Corrosion and tuberculation of iron pipes	19
1.4.6 Growth of animals	20
1.5 Factors Influencing Microbial Growth in Water Distribution System	21
1.5.1 Nutrient in the treated water	22
1.5.2 Corrosion and sediment accumulation	24

1	.5.3	Residual disinfectant	25
1	.5.4	Pipe materials	26
1	.5.5	Hydraulic effects	28
1	.5.5	Temperature effects	28
1.6	Conti	rol of Bacterial Regrowth	30
1	.6.1	Treatment improvement	30
1	.6.2	Disinfection	33
1	.6.3	Construction material	36
1	.6.4	Flushing and cleaning of mains	37
1	.6.5	Corrosion control	38
CHAPTER 2:	DESCI	RIPTION OF THE STUDY	40
	Objed		40
2.2	-	ling Locations	40
2.3		ces of Supply	41
2.4		ribution Pipelines	44
2.5		ling Methods	44
CHAPTER 3:			
		Listramon of Yan der Lord 1	47
3.1	Assin	milable Organic Carbon (AOC) rmination	47
3.2		Determination der Kooij method)	49
3	.2.1	Principle	49
3	.2.2	Glassware preparation	50
3	.2.3	Sampling and sampling treatment	51
3	.2.4	Inoculation and incubation	52
3	.2.5	Measurement of bacterial growth	52
3	.2.6	Calculation of AOC	53

3.3 Heterotrophic Plate Count	54
3.3.1 Introduction	54
3.3.2 Sampling	54
3.3.3 Plating	55
3.3.4 Enumeration	55
3.4 Acridine Orange Direct Cour	nt (AODC) 56
3.4.1 Introduction	56
3.4.2 Sampling	57
3.4.3 Apparatus and Chemical Preparation	L 57
3.4.4 Experimental procedure	e 59
3.4.5 Bacterial enumeration	60
CHAPTER 4: RESULTS AND DISCUSSION	61
4.1 Introduction	61
4.2 Assimilable Organic Carbon Concentration	61
4.2.1 AOC concentration in w samples	vater 63
4.2.2 Limitation of Van der methods	Kooij 64
4.3 Heterotrophic Plate Count (Bacteria	(HPC) 68
4.3.1 General discussion on	results 70
4.3.2 Alternative plating me	ethods 72
4.4 Total Bacterial Count	75
4.4.1 Presence of algae	77
4.4.2 Bacteria in clumps	78
4.4.3 Effect of filter mater	rials 79
4.4.4 Limitation of acriding	e 80

CHAPTER 5: GENERAL DISCUSSION AND CONCLUSION	82
5.1 Relationship Between HPC and AODC	83
5.2 AOC and Bacterial Counts (HPC and AODC)	84
5.3 Mechanism of Bacterial Regrowth	86
5.4 Conclusion	88
5.4.1 General	88
5.4.2 Methods of Analyses	89
REFERENCES	91
APPENDICES	98
Appendix 1 Preparation for AOC determination	98
appendix 2 pl7 colored	,
appendix 2 Pl7 colony counts and AOC determination	100

CHAPTER 1: LITERATURE REVIEW

1.1 DEFINATION OF TERMS

A number of different terms are used to describe the general bacterial population of drinking water and the phenomena related to it.

The total direct count of bacterial population of drinking water include both viable and non-viable; metabolically active and dormant bacteria. In this study, it is quantified by using the Epifluorescence Acidine-orange Direct Count method (AODC). This count will also be refered to as the total count.

The bacterial population is more commonly measured by using cultural techniques, which measure only that part of the total count which will grow in the laboratory under a defined set of conditions.

The counts obtained under this method has been refered to by a variety of terms, such as heterotrophic plate count (HPC) and the colony count. The number of bacterial cell which grow and form colonies on the plate are normally quoted as colony forming unit (cfu). In this study, the bacterial population which are cultured using yeast extract agar (YEA), pour plate method, counted after 7 days and incubated at 20°C will be referred to as the heterotrophic plate count. "Regrowth" is referred to the increase in bacterial numbers in the distribution system resulting from cell reproduction, detachment of biofilms and the rehabilitation of injured or dormant bacteria, in an environment conducive for its proliferation such as reduced disinfectant residual and availability of nutrients.

Assimilable organic carbon (AOC) is that portion of the total dissolved organic carbon (DOC) that can be readily digested by aquatic microorganism and used for growth. Often AOC comprises just a fraction (0.03%-27%) of total dissolved organic carbon [Van der Kooij,1982].