

Concrete Durability Issues

- 1. Very often, the quality of covercrete is poorer than the heartcrete because of inadequate curing. As a result, the covercrete is more porous and prone to development of cracks making it permeable to harmful agents.
- 2. However, a larger part of the durability issue is attributed to poor design and construction practice, such as poor detailing, low cover achieved at site, poor compaction and inadequate curing of concrete.
- 3. The tendency to use higher yield strength steel (up to 500 MPa) as reinforcement in concrete and at larger spacing would result in wider surface crack width and more microcracks in the covercrete. These cracks serve as potential pathway for ionic transport between the concrete surface and the steel reinforcement.

Copyright © 2011 Dr. Lim Char Ching

7

<section-header><section-header><section-header><list-item><list-item><list-item><section-header>

Methods of Curing Concrete

- 1. <u>Wet or moist curing</u> preventing moisture loss by continuously wetting the exposed concrete surface eg. Wet burlaps, fogging, water-ponding, plastic sheets, etc.
- Curing compounds are liquids usually sprayed directly onto concrete surfaces which then dry to form an impermeable membrane that retards the loss of moisture from concrete.
- 3. <u>Internal curing admixtures</u> are admixtures incorporated into fresh concrete to inhibit moisture loss. These are relatively new products and care should be taken to use them.

Copyright © 2011 Dr. Lim Char Ching

11

<section-header><section-header><text><image><caption><image><image><image>

<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Mineral Admixtures

TYPES : pulverised fuel ash (pfa), condensed silica fume (csf), ground granulated blastfurnace slag (ggbs),

PFA : A by-product from the combustion of pulverised coal in thermal power stations

CSF: A by-product from the smelting process in the production of silicon metal alloys

GGBS : A by-product of iron manufacturing

Industrial wastes !!

Copyright © 2011 Dr. Lim Char Ching

24

Typical	Chemical	Compos	sition	
% by mass	OPC	CSF	PFA	GGBS
SiO ₂	20	92	50	38
Fe ₂ O ₃	3.5	1.2	10.4	0.3
Al_2O_3	5	0.7	28	11
CaO	65	0.15	3	40
MgO	0.1	0.2	2	7.5
Na ₂ O	0.1	1.0	0.7	0.4
K ₂ O	0.7	1.5	2.5	0.8
Fineness (m²/kg)	300 - 400	20,000	400 - 700	350 - 600
(m²/kg)				

Mix Designatio	% wt. of FA	% wt. of Cement	Initial Setting Time hours : minutes	Final Setting Time hours : minutes
n 220172		100	5 40	7 00
330K2	0	100	5:40	7:00
330W2	0	100	5:20	6:40
454WE2	40	60	6:20	7:50
454WV2	40	60	6:30	8:00
555Q	50	50	10:30	13:00
555R	50	50	10:50	14:00
Effect (Siriviva	of Fly atnanon	ash on et al)	Setting Times	of Concrete

History of HRWR Development			
Year	Chemical Base	Generation	Water Reduction
1930	Ligno-sulphonates, Gluconates	1st	10%
1970	Sulphonated Melamine/Naphtalin polymers	2nd	20%
	Vinyl-copolymers	3rd	30%
2000	Modified Polycarboxylates	4th	40%

Location	Chloride Content (gm/litre)
Gulf of Finland (Vesikari, 1988)	3.0 - 3.5
Baltic Sea (Vesikari, 1988)	7.0 - 10.0
Oceans (Vesikari, 1988)	20.0 - 35.0
North Sea (Pettersson, 1996)	17.0
Singapore (Liam et al, 1992)	12.0
Gulf of Mexico (Castro et al, 1993)	37.6

	Chloride Attack (3)			
	Chemical composition (gm/litre)			
	Lumut	Johor Bahru	Kuantan	
Sodium	8.58	7.92	10.44	
Potassium	0.45	0.41	0.38	
Calcium	0.39	0.36	0.40	
Magnesium	1.14	1.05	1.16	
Sulphate	2.44	2.15	2.32	
Chloride	17.16	15.54	15.91	
Bromide	0.06	0.06	0.06	
Typica	l Chemical C Water in	ompositions c Malaysia	of Sea	
	Copyright © 2011 Dr. Lim Char Ching 5			

<u>Mai</u>	n Compounds In F	Portland Cement
C ₃ S	Tricalcium Silicate (54%)	Contribute to early strength development
C ₂ S	Dicalcium Silicate (17%)	Contribute to later age strength development
C ₃ A	Tricalcium Aluminate (12%)	Insignificant to strength development. Can cause "flash-set"
C ₄ AF	Tetracalcium aluminoferrite (8%)	Insignificant to strength development. Reacts with gypsum and helps to accelerate C_3S and C_2S hydration
	Copyright © 2011 Dr. Li	m Char Ching 61

