SUSTAINABILITY IN GEOTECHNICAL ENGINEERING IN PUBLIC WORKDS DEPARTMENT

MALAYSEA

Che Hassandi Abdullah and Mohd Nor Omar

Cawangan Kejuruteraan Cerun World Centre of Excellence on Landslide Risk Reduction

What is Sustainability?

Optimizing the resources used minimizing damages to the environment & causing social disruption

INTRODUCTION

Malaysia plan to reduce carbon emission by 40% by the year 2020 (PM, 2009 in Copenhagen)

All government agencies are asked to reduce energy consumption and apply value engineering

Elements of Sustainability in Geotechnical Engineering

- 1. Proper planning and management
- 2. Recycling of materials
- 3. Reduce environmental damage
- 4. Innovation in design and material use
- 5. Reduce earthwork
- 6. Waste recycling
- 7. Avoid public disruption

Sustainability Status in PWD Malaysia

 PWD is not involved in geoenvironmental engineering
 Environmental Div. was established 10 years ago, Maintenance Div. 5 years ago, Slope Engineering Div. 6 years ago

Concentrate on green building and reduction of energy usage

Sustainability in geotechnical engineering is at its initial

phase

JKR

Sustainability in PWD Malaysia

- Gathering information, archiving, interpretation and dissemination
- 2. Hazard and risk maps for landslides
- 3. Guidelines
- 4. Bio-engineering
- 5. New technology
- 6. Public awareness and education

Slope information

- Malaysia has 16,946km of Federal roads with estimated 16,000 slopes
- Inventorized more than 6,000 slopes
- Record the characteristics of landslides

Slope information

BOTH SLOPES FROM THE LOWER MARKER IS: 11 SECTION NUMBERS MAY NOT ALWAYS EQUATE TO THE KM MARKERS. THE SECTIONS SHOULD BE MARKED AT THE BOTTOM OF KM POSTS

Slope information

Integrated Slope information System (ISIS)

Slope information

Data browsing through intranet

Integrated Slope Information System

Input Data on Slope (Linear-based)

- > Twenty (20) attributes :-
 - Height (H)
 - Slope Angle (SA)
 - Slope Shape (SS)
 - Slope Cross-Section (CS)
 - Plan Profile (P)
 - Cutting Topography Relationship (CT)
 - Upslope/downslope geometry (UDG)
 - Structure Present (ST)
 - Main Vegetation Cover Type (MCT)
 - Vegetation Cover Type condition
 - Rock Exposed Percentage (EP)
 - Corestone Boulder (CB)
 - Rock Condition Profile (RCP)
 - Rock Type
 - Rock Description
 - Feature Aspect (FA)
 - Seepage present
 - Evidence of saturation ground
 - Evidence of Ponding
 - Condition of surface runoff

Hazard and Risk Maps for Roads (linear base)

Risk map

Hazard map

HAZARD MAP (*Area Based*)

Landslides by States (2005-2009)

Material/Structure where Landslides Occurred (2005-2009)

1) Collection, Archiving, Interpretation & Dissemination > Soil Profile and Foundation Information System (SoPFIS)

SOIL PROFILE

Project: BPT020005 - SK Taman Dato' Harun 2 Soil Profile Sec.A-A

JKR

PHOTO MENU INTERFACE

SLOPE DESIGN GUIDELINE

PWD GUIDELINES

PEMERIKSAAN CERUN JABATAN KERJA RAYA MALAYSIA

JKR 21504 0001-06

Nota Dan

Public Works Department Malays

Kejundenan Cenas IPJKR

JKR SLOPE ENGINEERING BRANCH, PUBLIC WORKS DEPARTMENT MALAYSIA **Garis Panduan**

GUIDELINES ON SLOPE MAINTENANCE IN MALAYSIA

MAINTENANCE GUIDELINES Inspection Frequency

Personnel	Risk Category	Frequency (minimum)
RoutineTA or TechnicianMaintenance(any trainedInspectionsperson)	1 & 2	Once/yr
	3	Once/2 yrs
EngineersQualifiedMaintenanceEngineerInspection	1 & 2	Once/5 yrs
	3	Once/10 yrs
Qualified water	1, 2 &	Recommended
checks on personnel water/sewage pipes	3	by the qualified engineer
	Personnel TA or Technician (any trained person) Qualified Engineer Qualified water personnel	PersonnelRisk CategoryTA or Technician (any trained person)1 & 233Qualified Engineer1 & 233Qualified water personnel1, 2 & 3

DESIGN GUIDELINES

- Limiting the height of slopes to not more than 30m
- > Use other alternatives
- Geological mapping
 Independent checker

BIO-ENGINEERING

- Reduce erosion & sediments yield
- Decrease of liability exposure
- Improve aesthetics
- Enhance existing environment
- Improve stability

mellastoma and legumes grown in weathered carbonaceous rock without regular maintenance

SOIL-ROOT MATRIX REINFORCEMENT EFFECT WITH UNIVERSITY MALAYA

4.0

100 T T T T T T T

S.S.

JKR

weite E

111

Jalan Kuala Kubu Baru – Gap Slope at km 15

NEW TECHNOLOGY

- Malaysian geotechnical engineering fraternity is opened to new technologies
 - Flexible polyester-based woven geogrids were developed starting in 1984 and the first application was in mid-1985 in a highway in Malaysia (Pegg, 2008)

 Not many geotechnical technologies are presented as sustainable

PVD has been used since 1986

NEW TECHNOLOGY Geophysical methods for Site Investigation

Seismic

JKR

Resistivity

SLOPE PUBLIC AWARENESS EXHIBITION

For NGOs

Do We Want This???

Cameron Highlands

Or This???

The River That We Pollute

SUMMARY

- PWD has initiated some sustainability elements in geotechnical engineering
- Sustainability is currently in the initial phase
- Data collection, archiving, interpretation and dissemination especially for better slope and SI management are ongoing
- hazard and risk maps are used for planning, treatment and maintenance
- Research on bio-engineering has produced results
- Guidelines on design and maintenance of slopes will hopefully reduce landslides
- PWD have embraced new technology and innovation
- Public awareness programs have created awareness in some landslide prone areas

STUDY AREA

178

Cut Slope km 36.2 Gerik – Jeli Road, studies by UKM Pakarunding (science environment faculty), during October '06 – December '07,

22.06.2006

Field shear box test : 300mm x 300 mm steel box

Soil & root was compacted in the shear box

Normal load was applied

Displacement measured after the end of experiment

Results & Findings : Soil-Root Matrix Studies

Tensile resistance at certain root

L.leucocephala - highest tensile resistance in all diameters
Root diameter influences the total max force
Tensile resistance increases with increasing root diameter
Significant tensile resistance at higher diameters

JKR

CAWANGAN KEJURUTERAAN CERUN JABATAN KERJA RAYA, MALAYSIA

KERJA BIO - KEJURUTERAAN : PENANAMAN SPESIES TUMBUHAN TERPILIH DAN PENGHIJAUAN SEMULA CERUN POTONGAN JALAN Di Lokasi Km 20, Jalan Simp. Pulai - Cameron Highland

> TARIKH MULA: OKTOBER 2008 TARIKH SIAP: SEPTEMBER 2009

STUDY AREA 4 (on going project)

Km 20, Jln. Simp. Pulai – Cameron

Selected species were planted for in situ testing on the locality of cut slope Km 20, Jln. Simp. Pulai – Cameron

A ARAY AN

Jalan Kuala Kubu Baru – Gap

.03.2009 12:27

111

Jln. K. Kubu Baru – Gap Slope Failed at km 15

- Using Coil Rolls & Fiber Mat
- Done by MTS Sdn Bhd
- Planted with Vetiver grass on granitic soil in area 15 X 10 m²
- Study on Okt. Nov., 2007

JIn. K. Kubu Baru – Gap Slope Failed at km 23 • Using Fiber Mat only • Done by Wintima Sdn Bhd • Planted with Vetiver grass

- on granitic soil in area 30 X 10 m²
- Study on Okt. Nov., 2007

Jalan Kuala Kubu Baru – Gap Slope Failed at km 23

30.03.2009

After One Year

Times

SLOPE CHARACTERISTIC

The formation of crack at the slope is an obvious sign of instability; they formed and developed through the position of tension and shear zones.

Failure in form of wedging of slope was observed.

Some erosion mark such as rill and gully erosion was observed widespread.

Ensite le lon of Geo-Materials

Installation of Geo-Materials

Installation of Bio-Materials

Total of 1030 plant materials which representing of 39 species were used

> 10 species of herbaceous plant species, 14 species of climbers and 15 species of woody plants species were installed

Procedure of root pullout test

Site clearing

Measurement of the plant was taken

Stem was cut and gripped with wedge

Dial gauge and load ring was set to nil (zero)

Pull-out resistance force value was taken

Until root is pull-out

Root was carefully excavated from the soil

Pull-out test machine

Load ring

Plant was pull-out from the soil

Diameter measured

Wedge and barrel