

EFFECTS OF WORK ZONE DETOURS ON RURAL HIGHWAY TRAFFIC OPERATIONS

by
SAFRY KAMAL AHMAD, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December 1992

ABSTRACT

EFFECTS OF WORK ZONE DETOURS ON RURAL HIGHWAY TRAFFIC OPERATIONS

by

SAFRY KAMAL AHMAD, B.S.

SUPERVISOR: CLYDE E. LEE

An evaluation of the effects traffic operations at two work-zone sites along a 4-lane divided rural highway was carried out using infrared sensors and retro-reflectors. Traffic studies about vehicle volume and speed characteristics during (1) construction activities and (2) after construction, revealed that the effects were different under two different work zone strategies, i.e. (a) permanent lane closures using concrete barrier, (b) temporary lane closures using barrel-type barrier. Vehicle speeds through work zones were influenced by truck volumes, total volume of traffic, and varies at different hours during weekday or weekend. Effects of lane closures and detours on additional road-user cost is small where congestions at rural highway work-zones seldom arise. Evaluation of traffic control signs proved them to be effective in reducing accident risks.

TABLE OF CONTENTS

Acknowledgements	iv
Abstracts	
List of Table	viii
List of Figures	
CHAPTER 1 INTRODUCTION	1
Road Detours	
Objectives and Scope of Stud	dy 2
CHAPTER 2 LITERATURE REVIEW	7
Literature Findings	4
Summary	7
CHAPTER 3 TRAFFIC DATA AG	CQUISITION9
Introduction	9
Data Collection Sites	10
Data Collection Method	13
Equipment	15
Periods of Observations	22
Data Processing	
	Collection23
Reliability and Accuracy	28
Summary	33
CHAPTER 4 FIELD DATA EVALUA	TION34
	34

La	ane Distribution	.53
V	ehicles Headway	.59
	omposition of Traffic	
	peed Characteristics	
	ffects of Truck Percentage on Speed	
E	ffects of Traffic Volume on Speed	.79
Sı	peed Versus Hours of the Day	.81
W	Veekend Versus Weekday Speed	.82
	ummary	
CHAPTER :	5 ECONOMIC IMPACT ANALYSIS	.84
In	ntroduction	.84
W	Vork Zone Impact Estimating Procedures	.84
Q	UEWZ Model Application	85
	UEWZ Model Characterization	
_	esults	
	Discussions	
	ummary	
	*.	
CHAPTER 6	5 TRAFFIC SIGNS AND OPERATIONS	98
In	ntroduction	98
T	raffic Control Devices	99
	raffic Control Area	
L	ighting Devices and Warning Beacons	115
	Aspects of Safety in Work Zones	
S	ummary	119
CHAPTER 7	CONCLUSION AND RECOMMENDATION	121
REFERENC	TES	128

List of Tables

Table 3.1. Comparison between manual count
and infrared sensors
Table 4.1. Daily traffic volume at Work Zone 137
Table 4.2. Daily traffic volume at Work Zone 237
Table 4.3. Daily traffic at Rigid Pavement Test Section
Table 4.4. Daily traffic at Flexible Pavement Test Section
Table 4.5. Daily traffic at Flexible Pavement Test Section
Table 4.6. Comparison of traffic volume at Rigid and
Flexible Pavement Test Sections
Table 4.7. Lane distribution at Rigid Pavement Test Section54
Table 4.8. Lane distribution at Flexible Pavement Test Section54
Table 4.9. Traffic distribution at Rigid Pavement
Test Section57
Table 4.10. Traffic distribution at Flexible Pavement
Test Section58
Table 4.11. Vehicles headway between Work Zones59
Table 4.12. Percentage of trucks at Work Zone 162
Table 4.13. Percentage of trucks at Work Zone 262
Table 4.14. Composition of traffic at Flexible Pavement
Test Section63
Table 4.15 Comparison of speeds for Work Zone 1 67

CHAPTER 1

INTRODUCTION

ROAD DETOURS

Road detours are necessary to service traffic during lane closures. They are introduced during times when highways need to be maintained or rehabilitated, or when sections of the highway are in a condition not favorable to road users. Maintenance and repair operations which demand extensive roadwork involving lane closures and detours can adversely affect traffic flow and safety of road users and workers. These effects result when the introduction of lane detours reduces the level of service to a value less than that provided for normal highway operation.

Studies have shown that in construction zones, a lane closure creates traffic congestion in the zone and then restores capacity on the open roadway beyond the zone. This eventually leads to an increase in danger to drivers facing inconsistent and unfamiliar traffic and road situations. Workers and vehicle drivers alike at this so-called 'danger zone' will be exposed to severe accident risk if precautions are not taken to ensure the safety of all road users and workers in the construction areas. Delay of traffic in the congested lanes very often results in an increase in the vehicle operating cost and vehicle emissions. These issues are currently being emphasised by various government agencies.

Thus there is a need to address these problems in work zones especially

lacking. The study can be carried out with the purpose of improving the overall management of roadworks for the safety of long distance travelers to minimize inconvenience and reduce accident risks. In addition, study of traffic operations at these work zones can also be aimed at resolving potential conflicts that may exist between roadwork activities and the motorists' needs.