

DENICK FOR A WATER SUPPLY SCREEP

628.1 Lye

UNIVERSITY OF MALAYA

FACULTY OF HUL ARING

DESIGN FOR A WATER SUPPLY SCHEME

BY

LYE MUNN WAI

A GRADUATION THESIS SUBMITTED IN PARTIAL FULFILMENT FOR THE DETREE OF BACHELOR OF ENGINEERING

SUPERVISOR : DR. SABANATHAN

THESIS PARTNER : MR. MANJIT SINGH

1979/80

PERPUST	KAAN PUSAT, IP. J. K	. R.
No. Kela	628.1 /LYE	_
No. Pero	ehan 5961	1
Tarikh	20 SEP 1995	_

∞	NT	ENT	S

	the second se	PAGE
SYN	IOPSIS	1
ACK	CNOWLEDGEMENT	11
1.	INTEDDUCTION	1
2.	DESCRIPTION OF SCHEME	
	2.1 General	3
	2.2 Topographical Features	3
	2.3 The Scheme Proper	5
3.	INVESTIGATION, PLANNING AND DESIGN OF SCHEME	- 5
4.	DESIGN OF ELEVATED R.C. WATER TOWER	
	General	10
	4.1 Design Information	11
	4.2 Elevation of Water Tower	12
	4.2.1 Determination of Water level	13
	4.2.2 Determination of radius of spherical shell	14
	4.2.3 Thickness of Dome Slab	15
	4.3 Design of Dome	
	4.3.1 Membrane Stresses in Dome	17
	4.3.2 Membrane Stresses (with Lantern Hole)	22
	4.3.3 Comparis on of Direct stresses using the two	
	methods of analysia	26
	4.3.4 Calculation of Redundants X1 and X2	28
	4.3.5 Design of reinforcement for Dome	36
	4.4 Design of Conical Frustrum	
	General	39
	4.4.1 Dimensions of Frustrum	40
	4.4.2 Loading	41
	4.4.3 Analysis of Section	43
	4.4.4 Wind Loading	46
	4.4.5 Loading cases	49
	4.4.6 Design of reinforcement	50
	4.4.7 Check for cracking	53

	PAGE
4.5 Design of Ring Beam of Dome	54
4.6 Design of tank floor	•
(with circular hole in the centre)	
4.6.1 Introduction	56
4.6.2 Dimensions and loading of Slab	56
4.6.3 Calculation of stresses	57
4.6.4 Design of reinforcement	58
4.6.5 Limit State of cracking	60
4.7 Design of Access Man-Hole Shaft	64
4.8 Design of Cylindrical Shaft wall	. 11.00
4.8.1 General	69
4.8.2 Wind Loading	70
4.8.3 Vertical Loading	74
4.8.4 Loading cases	-75
4.8.5 Calculation of stresses	76
4.8.6 Design of reinforcement	77
4.9 Design of intermediate floor slabs	78
4.10 Design of spread footing	
4.10.1 Action of a circular spread footing	80
4.10.2 Trial Proportions of footing	81
4.10.3 Loads at serviceability limit state	82
4.10.4 Stability Analysis	84
4.10.5 Loads at ultimate limit state	85
4.10.6 Design of reinforcement	89
4.11 Alternative Design - Pile Foundation	
4.11.1 General	92
4.11.2 Loading	93
5. CONCRETE AND REINFORCEMENT QUANTITIES	
5.1 Introduction	99
5.2 Reinforcement quantities	99
5.3 Concrete quantities	106
. DESIGN OF DISTRIBUTION SYSTEM	
6.1 Introduction	

		PAGE
	6.1.1 Methods of distribution	107
	6.1.2 Requirements of a Pipe-Line	108
	6.1.3 Service pipes	108
	6.1.4 Pipe Appurtenances	108
	6.1.5 Pipe Laying	108
	6.2 Design of Reticulation System for Palong 6	
	6.2.1 Obtaining the layout plans	109
	6.2.2 Preparation of the Pipe Network	109
	6.2.3 Measurement of Pipe Length	110
	6.2.4 Choice of an input junction	110
	6.2.5 Obtaining reduced level of nodes	111
	6.2.6 Computing the drawoffs at the nodes	111
	6.2.7 Input flow at first node	113
	6.2.8 Flow directions and magnitude	113
	6.2.9 Sizing of pipes	113
	6.3.0 Analysis of flow by Hardy Cross Method	114
7.	COMPUTER PROGRAM FOR RETICULATION NETWORK ANALYSIS	
	7.1 Capabilities and Limitations	117
	7.2 Brief description of Method and Procedure used	117
	7.3 Flow chart of Program	120
8.	COMPUTER PRINTOUT AND ANALYSIS	
	8.1 Input Data	124
	8.2 Output Data	126
	8.3 Checking results obtained from computer printout	128
9.	CONCLUSION	130
	REFERENCE	

APPENDIX

SYNOPSIS

This thesis deals mainly with the design of a elevated reinforced concrete water tower and submits a proposal for the reticulation system for Palong 6, of the Palong Scheme in Negri Sembilan.

In the water tower, the dome and frustrum are analysed as shell structures. The other components of the structure are analysed using basic principles. Direct stresses and bending stresses in the dome are calculated. In the frustrum only direct stresses are calculated. Bending moments at the edge of the tank floor are calculated using standard formula. The design is in accordance with CP110 except where superceeded by specific recommendation in BS 5337. The serviceability limit state of cracking which is crucial in water retaining structures is checked. An estimate of quantities of steel and concrete used in the water tower is carried out.

In the second part of this thesis, a design for the reticulation system in Palong 6 is presented. The reticulation network is analysed using Hardy Cross's method. A computer program is used to analyse the flow distribution and to calculate the residual head at all points in the system. A flow chart of the program is presented to facilitate understanding of the principles involved in the calculation.