INTRODUCTION TO

SEISMIC DESIGN IN

ACCORDANCE WITH MS

28 OGOS 2020

Presented by :

Ir. LEE CHOON SIANG

Jurutera Awam Penguasa Cawangan Kejuruteraan Awam dan Struktur Tingkat 1u, Block G Ibu Pejabat JKR, Jalan Sultan Salahuddin, 50480 Kuala Lumpur.

Email: cslee.jkr@1govuc.gov.my

Plate Boundaries

Type of Margin	Divergent	Convergent	Transform	
Motion	Spreading	Subduction	Lateral sliding	
Effect	Constructive (oceanic lithosphere created)	Destructive (oceanic lithosphere destroyed)	Conservative (lithosphere neither created or destroyed)	
Topography	Ridge/Rift	Trench	No major effect	
Volcanic activity?	Yes	Yes	No	
Lithosphere Asthenosphere (a)		Volcanic arc) (volcanic arc) Trench Trench Trench Trench Earthquakes (b)	Earthquakes within crust	

Taiwan Plate Boundaries

Surface Body Waves

S- Wave in action

How do we measure earthquake?

By Richter scale?

What is the engineering measurement units for earthquake?

Intensity:

The severity of earthquake shaking is assessed using a descriptive scale. – The Modified Mercalli Intensity Scale.

Unit Measurements:

Earthquake size is a quantitative measure of the size of the earthquake at its source.-The Richter Magnitude Scale.

Richter Sacle	Acceleration (g)	Velocity (cm/s)	Perceived shaking	Potential damage
	< 0.0017	< 0.1	Not felt	None
11–111	0.0017 – 0.014	0.1 – 1.1	Weak	None
IV	0.014 - 0.039	1.1 – 3.4	Light	None
v	0.039 - 0.092	3.4 - 8.1	Moderate	Very light
VI	0.092 – 0.18	8.1 – 16	Strong	Light
VII	0.18 – 0.34	16 – 31	Very strong	Moderate
VIII	0.34 - 0.65	31 – 60	Severe	Moderate to heavy
IX	0.65 – 1.24	60 - 116	Violent	Heavy
X+	> 1.24	> 116	Extreme	Very heavy

Peak Ground Acceleration(PGA)

Peak ground acceleration (PGA) is the maximum ground acceleration that occurred during earthquake shaking at a location.

Peak ground a	Peak ground acceleration (PGA)			Richter and moment magnitude scales			
Measures how hard the earth shakes at a given geographic point.			Ritcher scale measures Intensity (Amount of Energy Releases)				
PGA is measured by instruments, such as accelerographs. can be correlated to macroseismic intensities on the Mercalli scale but these correlations are associated with large uncertainty.		The Mercalli intensity scale based on personal reports and observations to measure earthquake intensity					
Measured in unit of m/s², g _o or gal		Unitless					
Base value	(Gal, or cm/s²)	(ft/s²)		(m/s²)	(Standard gravity, g ₀)		
1 Gal, or cm/s ²	1	0.0328084		0.01	0.00101972		

Earthquake Energy:

Earthquake energy and frequency

Notable earthquakes

Events with similar energy

Earthquake data and frequency from USGS at http://earthquake.usgs.gov/earthquakes/eqarchives/year/eqstats.php Energy released and events from http://alabamaquake.com/energy.html and http://en.wikipedia.org/wiki/Orders_of_magnitude_(energy)

Probability of Exceedance

ASCE Specification

Performance level	Description	Mean return period (years)		Annual probability of exceedance (%)			
Operational	Frequent	25		4.0% in 50 years			
Immediate occupancy	Occasional	72		1.4% in 50 years			
Life-safety	Rare	250-800	0.	0.12–0.4% in 50 years			
Collapse prevention	Maximum Considered (MCE)	800–2500		0.04–0.12% in 50 years			
EN 1998-1							
Performance Requirements	Description	Mean return period (years)	Annu of exc	Annual probability of exceedance (%)			
No-collapse	Rare	475]	10% in 50 years			
Damage	Occasional	95	1	10 %in 10 years			

Damage Occasional 95 limitation

NA MS EN 1998-1

Performance Requirements	Description	Mean return period (years)	Annual probability of exceedance (%)
No-collapse	Rare	475	10% in 50 years
Damage limitation	Occasional	95	10% in 10 years

PGA Contour Map of Peninsular Malaysia With A 10% Probability of Exceedance in 50 Years

PGA Contour Map of Sarawak With A 10% Probability of Exceedance in <u>50 Years</u>

PGA Contour Map of Sabah With A 10% Probability of Exceedance in 50 Years

Seismic Load & Design Approach

Analysis, Design & Assessment

Methods of Analysis

Lateral Force Method of Analysis (Equivalent Static) 2) Modal Response Spectrum Analysis Non-Linear (Push Over 3) Analysis) Time History Analysis 4)

Equivalent Static (Lateral Force Method)

- 1.Acquire Design Ground acceleration from Macrozonation map according to performance requirements (return period)
- 2.Determine importance Factor, γ_I according to the importance class
- 3.Determine Ground Type for Soil Investigation
- 4.Specify building type and height
- 5.Calculate the fundamental period of vibration, T_1
- 6.Calculate the seismic base shear F_b
- 7.Distribution of the horizontal SeismicForce8.Modelling and analysis

Modal & Response Spectral Analysis

Steps

 Develop Acceleration Response Spectrum diagram according to MS EN 1998-1
Check minimum mass Participation factor>90%
Check Base Shear

Acceleration Response Spectrum

Mass Participation

MODE	MASS PART.	MASS PARTTRANSLATION (%)			SUMM-Y	SUMM-Z	MASS PA	MASS PART. ROTATION (%)	
	х	Y	z				х	Y	z
1	0	0	81.58	0	0.003	81.577	0	0	
2	0.22	0	0	0.224	0.003	81.577	0.64	0	
3	81.48	0	0	81.708	0.003	81.577	232.46	0	
4	0	0.08	9.48	81.708	0.085	91.06	0	0	
5	0	0.04	0	81.708	0.121	91.062	0	0	
6	0	2.53	0.01	81.708	2.65	91.067	0	0	
7	0	6.21	0.02	81.708	8.858	91.084	0	0	
8	0	4.85	0	81.708	13.708	91.085	0	0	
9	0.04	0	0	81.746	13.708	91.085	0.11	0	
10	0.02	0	0	81.765	13.708	91.085	0.05	0	
11	9.43	0	0	91.19	13.708	91.085	26.77	0	
12	0	0	o	91.191	13.708	91.085	0	0	
13	0.03	0	o	91.216	13.708	91.085	0.07	0	
14	0.01	0	o	91.221	13.708	91.085	0.01	0	
15	0	1.9	0.01	91.221	15.604	91.097	0	0	

Push-Over Analysis

Simplified nonlinear analysis methods, referred to as Nonlinear Static Analysis Procedures which includes the capacity spectrum method that uses the intersection of the capacity (pushover) curve and a reduced response spectrum to estimate maximum displacement.

Non Linear Push-Over Analysis

- To obtain the maximum shear strength of the structure, and the collapse mechanism
- To evaluate the structure's collapse mechanism without exhausting the plastic rotation capacity of the members
- To obtain the monotonic displacement and global ductility capacity of the structure
- To estimate the concentration of damage and IDI (Inter-storey Drift Index) that can be expected during the non-linear seismic response.

Non Linear Component

Time History Analysis

Time history analysis is used to determine the seismic response of a structure under dynamic loading of representative earthquake.

Response History Procedure

- Not fewer than three simulated ground motions
- Selected from recorded events near site consistent with design basis (or maximum considered) earthquake
- If at least seven simulated ground motions, average value is used for design
- If fewer than seven simulated ground motions, maximum value is used for design

Fundamental Period Of Vibration

MS EN 1998-1

 $T_1 = C_{\mathsf{t}} \cdot H^{3/4}$

(4.6)

where

- C_t is 0,085 for moment resistant space steel frames, 0,075 for moment resistant space concrete frames and for eccentrically braced steel frames and 0,050 for all other structures;
- *H* is the height of the building, in m, from the foundation or from the top of a rigid basement.

Buildings Fundamental Period vs Height

Buildings Response Under High Frequency Of Vibration

Buildings Response Under Low Frequency Of Vibration