

Principles of Acoustic Measurements

Exercises:

- Basic Concepts of Sound
- Measuring Sound
- Measuring Sound in Practice
- Basic Frequency Analysis of Sound

Sound Pressure Level Measurements

- Measurement of perceptible change of SPL
- Pressure/temperature analogy
- dB conversion

Sound Fields

- Spatial Decay
- Pressure increase at walls

• dB ± dB

- Addition of dB's
- Subtraction of dB's

Sound Pressure Level Measurements

Measurement of perceptible change of SPL

- Turn on the 2236 Sound Level Meter and point it at the radio
- Using a Parameter arrow button, select SPL
- Note what SPL you measure
- When the level is increased to a level just perceptible, make a new SPL reading
- Compare the two levels. Does it correspond to the theoretical 5 dB?

Pressure/temperature analogy

- Make a sketch of the lecture room
- Measure SPL for electrical drill in different positions
- Note what SPL you measure on the sketch

dB conversion

• Use the conversion chart in the lecture to convert the measured dB levels to pressure values in Pascal

Sound Fields

Spatial Decay

- Place the drill in one end of the lecture room
- Turn on the 2236 Sound Level Meter and measure the SPL at distances 1,2,4 and 8 m
- Plot the values on the chart below

Pressure increase at walls

- Measure noise from drill near the walls and corners vs centre of room
- Do you get the expected level increase at the walls and corners

$dB \pm dB$

Addition of dB's

- Turn on the 2236 Sound Level Meter and measure the sound level from one vs two drills
- Note the different levels and compare the result to calculated values

Subtraction of dB's

- Switch on one of the drills and the radio to simulate a real world situation where the noise from the radio present the background noise
- Measure the noise with both noise sources on
- Switch off the drill and measure the background noise (radio)
- Calculate the noise from the drill alone using the chart in the lecture
- Compare the calculated value with the value measured earlier

Principles of Acoustic Measurements

Exercises:

- Basic Concepts of Sound
- Measuring Sound
- Measuring Sound in Practice
- Basic Frequency Analysis of Sound

Measuring Sound

Microphones

- Free field and Random microphones
- IEC and ANSI

• Sound Level Meters

- Time weighting continuous
- Time weighting intermittent
- Time weighting impact
- Crest factor

Free field and Random Incidence

Measure Free Field Value

- Turn on the 2236 Sound Level Meter and point it at the drill
- Using a Parameter arrow button, select SPL
- Note what SPL you measure

Measure Random Incidence Value

- Place the random incidence corrector over the microphone
- Point the 2236 Sound Level Meter at the drill
- Using a Parameter arrow button, select SPL
- Note what SPL you measure

IEC vs. ANSI

Measure According to IEC

- Turn on the 2236 Sound Level Meter and point it at the drill
- Using a Parameter arrow button, select SPL
- Note what SPL you measure

Measure According to ANSI

- Point the 2236 Sound Level Meter at an angle of approximately 70°-80° from the direction of the drill
- Using a Parameter arrow button, select SPL
- Note what SPL you measure

Time Weighting - Continuous

Time Weighting - Intermittent

Time Weighting - Impact

Crest Factor

Principles of Acoustic Measurements

Exercises:

- Basic Concepts of Sound
- Measuring Sound
- <u>Measuring Sound in</u>
 <u>Practice</u>
- Basic Frequency Analysis of Sound

Measuring Sound in Practice

L_{eq} for a Continuous Noise

- Turn on the 2236 Sound Level Meter
- Using the Time Weighting (FSI) button, select the Fast time weighting (F, S or I now appears at the bottom left of the display)
- Using a Parameter arrow button, select L_{eq}
- Point the meter at the radio and start the measurement
- Note how the L_{eq} changes during the measurement

L_{eq} for an Event (Impacts)

- Using the Reset button, reset the sound level meter
- Point the meter at the hammer and start the measurement
- Note how the L_{eq} changes during the measurement

Statistics

- Point the meter at the radio and start the measurement and measure for about 10 seconds. Stop the measurement (PAUSE appears on the display)
- Using a Parameter arrow button, select the following parameters and note what you measured for each:

Note: L_X may have different settings in the actual sound level meter

Noise Dose and Exposure

Calibration

- Check the calibration of the sound level meter Turn on the 2236 Sound Level Meter
- Mount a 4231 Sound Level Calibrator on the microphone of the meter
- Press the Show Settings button 2 times (CALIBRATION appears on the display)
- Press the Edit Settings button and select 94.0 dB
- Switch on the calibrator
- Press OK
- The sound level meter now checks its calibration
- Press OK to use the new calibration
- Press NO to return to the main display
- Using a Parameter arrow button, select the SPL
- Note what you measure
- Remove the calibrator and listen to its signal

Position of the Sound Level Meter (1 of 2)

Position of the Sound Level Meter (2 of 2)

- Using the Reset button, reset the sound level meter
- Stand in a position close to reflecting surfaces and repeat the measurement holding the sound level meter close to your body
- Select the following parameters and note what you measured for each:

Principles of Acoustic Measurements

Exercises:

- Basic Concepts of Sound
- Measuring Sound
- Measuring Sound in Practice
- Basic Frequency
 Analysis of Sound

Basic Frequency Analysis of Sound

- Frequency and Wavelength
 - Diffraction
- Frequency Analysis
 - Continuous broadband noise
 - Intermittent noise
 - Continuous noise (tones)
 - Spectrum and dB(L)
- Perception
 - Frequency weighting
 - Parallel and serial analysis

Frequency and Wavelength

Frequency Analysis

Spectra of continuous and intermittent signals

- Set the radio to play music as an example of intermittent noise
- Turn on the 2236 Sound Level Meter and point it at the radio at a distance of app 1 meter
- Using a Parameter arrow button, select SPL, Fast
- Measure the spectrum from the intermittent noise in octaves
- Switch off the radio, turn on the drill and repeat the measurement
- Turn off the drill and measure the spectrum for repeated hammer blows

Freq. band	31,6	63	125	250	500	1 k	2 k	4 k	8 k
Intermittent									
Continuous									
Impact									

- Intermittent noise from radio
- Continuous noise from drill
- Impact noise from hammer blow

Frequency Weighting

Frequency Weighting

- Set the radio to play white noise
- Turn on the 2236 Sound Level Meter and point it at the radio at a distance of app 1 meter
- Using a Parameter arrow button, select SPL, Fast
- Using the Frequency Wt. arrow button and measure the parameters listed in the table below

dBA	
dBC	
dBL	

Frequency Wt.

